Difference between revisions of "2018 AMC 10B Problems/Problem 24"

(Problem)
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Let <math>ABCDEFG</math> be a regular hexagon with side length <math>1</math>. Denote <math>X</math>, <math>Y</math>, and <math>Z</math> the midpoints of sides <math>\overline {AB}</math>, <math>\overline{CD}</math>, and <math>\overline{EF}</math>, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of <math>\triangle ACE</math> and <math>\triangle XYZ</math>?
+
Let <math>ABCDEF</math> be a regular hexagon with side length <math>1</math>. Denote <math>X</math>, <math>Y</math>, and <math>Z</math> the midpoints of sides <math>\overline {AB}</math>, <math>\overline{CD}</math>, and <math>\overline{EF}</math>, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of <math>\triangle ACE</math> and <math>\triangle XYZ</math>?
  
 
<math>\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad  </math>
 
<math>\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad  </math>

Revision as of 16:12, 16 February 2018

Problem

Let $ABCDEF$ be a regular hexagon with side length $1$. Denote $X$, $Y$, and $Z$ the midpoints of sides $\overline {AB}$, $\overline{CD}$, and $\overline{EF}$, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?

$\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad$


Answer: $\frac {15}{32}\sqrt{3}$

Solution

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png