Difference between revisions of "2018 AMC 10B Problems/Problem 5"

m
Line 11: Line 11:
 
==See Also==
 
==See Also==
  
{{AMC10 box|year=2018|ab=B|num-b=3|num-a=5}}
+
{{AMC10 box|year=2018|ab=B|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:00, 16 February 2018

Problem

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?

$\textbf{(A)} \text{ 128} \qquad \textbf{(B)} \text{ 192} \qquad \textbf{(C)} \text{ 224} \qquad \textbf{(D)} \text{ 240} \qquad \textbf{(E)} \text{ 256}$

Solution

Consider finding the number of subsets that do not contain any primes. There are four primes in the set: $2$, $3$, $5$, and $7$. This means that the number of subsets without any primes is the number of subsets of $\{4, 6, 8, 9\}$, which is just $2^4 = 16$. The number of subsets with at least one prime is the number of subsets minus the number of subsets without any primes. The number of subsets is $2^8 = 256$. Thus, the answer is $256 - 16 = 240$. $\boxed{D}$

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png