Difference between revisions of "2018 AMC 10B Problems/Problem 23"

(Work in progress of my answer to this question.)
(Work in progress of my answer to this question.)
Line 11: Line 11:
 
<cmath>x\cdot y - 20x - 12y + 63 = 0</cmath>.
 
<cmath>x\cdot y - 20x - 12y + 63 = 0</cmath>.
  
 +
Using Simon's Favorite Factoring Trick, we rewrite this equation as
 +
 +
<cmath>(x - 12)(y - 20) - 240 + 63 = 0</cmath>
 +
<cmath>(x - 12)(y - 20) = 177</cmath>.
 
(awesomeag)
 
(awesomeag)

Revision as of 15:28, 16 February 2018

23. How many ordered pairs $(a, b)$ of positive integers satisfy the equation \[a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),\] where $\text{gcd}(a,b)$ denotes the greatest common divisor of $a$ and $b$, and $\text{lcm}(a,b)$ denotes their least common multiple?

$\textbf{(A)} \text{ 0} \qquad \textbf{(B)} \text{ 2} \qquad \textbf{(C)} \text{ 4} \qquad \textbf{(D)} \text{ 6} \qquad \textbf{(E)} \text{ 8}$


Let $x = lcm(a, b)$, and $y = gcd(a, b)$. Therefore, $a\cdot b = lcm(a, b)\cdot gcd(a, b) = x\cdot y$. Thus, the equation becomes

\[x\cdot y + 63 = 20x + 12y\], \[x\cdot y - 20x - 12y + 63 = 0\].

Using Simon's Favorite Factoring Trick, we rewrite this equation as

\[(x - 12)(y - 20) - 240 + 63 = 0\] \[(x - 12)(y - 20) = 177\]. (awesomeag)