Difference between revisions of "2018 AMC 10B Problems/Problem 7"
Line 1: | Line 1: | ||
In the figure below, <math>N</math> congruent semicircles lie on the diameter of a large semicircle, with their diameters covering the diameter of the large semicircle with no overlap. Let <math>A</math> be the combined area of the small semicircles and <math>B</math> be the area of the region inside the large semicircle but outside the semicircles. The ratio <math>A:B</math> is <math>1:18</math>. What is <math>N</math>? | In the figure below, <math>N</math> congruent semicircles lie on the diameter of a large semicircle, with their diameters covering the diameter of the large semicircle with no overlap. Let <math>A</math> be the combined area of the small semicircles and <math>B</math> be the area of the region inside the large semicircle but outside the semicircles. The ratio <math>A:B</math> is <math>1:18</math>. What is <math>N</math>? | ||
− | |||
Line 7: | Line 6: | ||
filldraw(arc((1,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((3,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((5,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((7,0),1,0,180)--cycle,gray(0.8)); label("...",(9,0.5)); filldraw(arc((11,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((13,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((15,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((17,0),1,0,180)--cycle,gray(0.8)); | filldraw(arc((1,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((3,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((5,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((7,0),1,0,180)--cycle,gray(0.8)); label("...",(9,0.5)); filldraw(arc((11,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((13,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((15,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((17,0),1,0,180)--cycle,gray(0.8)); | ||
</asy> | </asy> | ||
+ | |||
+ | |||
+ | <math>\textbf{(A) } 16 \qquad \textbf{(B) } 17 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 36</math> |
Revision as of 14:08, 16 February 2018
In the figure below, congruent semicircles lie on the diameter of a large semicircle, with their diameters covering the diameter of the large semicircle with no overlap. Let be the combined area of the small semicircles and be the area of the region inside the large semicircle but outside the semicircles. The ratio is . What is ?