Difference between revisions of "2018 AMC 10A Problems/Problem 9"
(→Solution 3) |
|||
Line 33: | Line 33: | ||
Let the base of the small triangles of area 1 be <math>x</math>, then the base length of <math>\Delta ADE=4x</math>. Notice, <math>\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}</math>, then <math>4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]</math> | Let the base of the small triangles of area 1 be <math>x</math>, then the base length of <math>\Delta ADE=4x</math>. Notice, <math>\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}</math>, then <math>4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]</math> | ||
Thus, <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]=\big[ABC\big]\big(1-\frac{2}{5}\big)=\frac{3}{5}\cdot 40=\boxed{24}</math> | Thus, <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]=\big[ABC\big]\big(1-\frac{2}{5}\big)=\frac{3}{5}\cdot 40=\boxed{24}</math> | ||
+ | |||
+ | <asy> | ||
+ | unitsize(5); | ||
+ | dot((0,0)); | ||
+ | dot((60,0)); | ||
+ | dot((50,10)); | ||
+ | dot((10,10)); | ||
+ | dot((30,30)); | ||
+ | draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0)); | ||
+ | draw((10,10)--(50,10)); | ||
+ | label("$B$",(0,0),SW); | ||
+ | label("$C$",(60,0),SE); | ||
+ | label("$E$",(50,10),E); | ||
+ | label("$D$",(10,10),W); | ||
+ | label("$A$",(30,30),N); | ||
+ | draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10)); | ||
+ | draw((15,15)--(45,15)); | ||
+ | </asy> | ||
+ | |||
+ | |||
Solution by ktong | Solution by ktong |
Revision as of 12:30, 17 February 2018
Problem
All of the triangles in the diagram below are similar to isosceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solution 1
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
Solution 2
Let the base length of the small triangle be . Then, there is a triangle encompassing the 7 small triangles and sharing the top angle with a base length of . Because the area is proportional to the square of the side, let the base be . Then triangle has an area of 16. So the area is .
Solution 3
Notice . Let the base of the small triangles of area 1 be , then the base length of . Notice, , then Thus,
Solution by ktong
Solution 4
The area of is 16 times the area of the small triangle, as they are similar and their side ratio is . Therefore the area of the trapezoid is .
Solution 5
You can see that we can create a "stack" of 5 triangles congruent to the 7 small triangles shown here, arranged in a row above those 7, whose total area would be 5. Similarly, we can create another row of 3, and finally 1 more at the top, as follows. We know this cumulative area will be , so to find the area of such trapezoid , we just take , like so. ∎ --anna0kear
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.