Difference between revisions of "2018 AMC 10A Problems/Problem 24"
(→Solution 3) |
m (→Solution 4) |
||
Line 24: | Line 24: | ||
==Solution 4 == | ==Solution 4 == | ||
− | The area of quadrilateral <math>FDBG</math> is the area of <math>\bigtriangleup ABG</math> minus the area of <math>\bigtriangleup ADF</math>. Notice, <math>\overline{DE} || \overline{BC}</math>, so <math>\bigtriangleup ABG \sim \bigtriangleup ADF</math>, and since <math>\overline{AD}:\overline{AB}=1:2</math>, the area of <math>\bigtriangleup ADF:\bigtriangleup ABG=(1:2)^2=1:4</math>. Given that the area of <math>\bigtriangleup ABC</math> is <math>120</math>, using <math>\frac{bh}{2}</math> on side <math>AB</math> yields <math>\frac{50h}{2}=120\implies h=\frac{240}{50}=\frac{24}{5}</math>. Using | + | The area of quadrilateral <math>FDBG</math> is the area of <math>\bigtriangleup ABG</math> minus the area of <math>\bigtriangleup ADF</math>. Notice, <math>\overline{DE} || \overline{BC}</math>, so <math>\bigtriangleup ABG \sim \bigtriangleup ADF</math>, and since <math>\overline{AD}:\overline{AB}=1:2</math>, the area of <math>\bigtriangleup ADF:\bigtriangleup ABG=(1:2)^2=1:4</math>. Given that the area of <math>\bigtriangleup ABC</math> is <math>120</math>, using <math>\frac{bh}{2}</math> on side <math>AB</math> yields <math>\frac{50h}{2}=120\implies h=\frac{240}{50}=\frac{24}{5}</math>. Using the Angle Bisector Theorem, <math>\overline{BG}:\overline{BC}=50:(10+50)=5:6</math>, so the height of <math>\bigtriangleup ABG: \bigtriangleup ACB=5:6</math>, and so our answer is <math>\big[ FDBG\big] = \big[ABG\big]-\big[ ADF\big] = \big[ ABG\big]\big(1-\frac{1}{4}\big)=\frac{3}{4}\cdot \frac{bh}{2}=\frac{3}{8}\cdot 50\cdot \frac{5}{6}\cdot \frac{24}{5}=\frac{3}{8}\cdot 200=\boxed{75}</math> |
-Solution by ktong | -Solution by ktong | ||
Revision as of 20:29, 10 February 2018
Problem
Triangle with and has area . Let be the midpoint of , and let be the midpoint of . The angle bisector of intersects and at and , respectively. What is the area of quadrilateral ?
Solution
By angle bisector theorem, . By similar triangles, , and the height of this trapezoid is , where is the length of the altitude to . Then and we wish to compute .
Solution 2
is midway from to , and . Therefore, is a quarter of the area of , which is . Subsequently, we can compute the area of quadrilateral to be . Using the angle bisector theorem in the same fashion as the previous problem, we get that is times the length of . We want the larger piece, as described by the problem. Because the heights are identical, one area is times the other, and .
Solution 3
The area of to the area of is by Law of Sines. So the area of is . Since is the midsegment of , so is the midsegment of . So the area of to the area of is , so the area of is , by similar triangles. Therefore the area of quad is (steakfails)
Solution 4
The area of quadrilateral is the area of minus the area of . Notice, , so , and since , the area of . Given that the area of is , using on side yields . Using the Angle Bisector Theorem, , so the height of , and so our answer is -Solution by ktong
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.