Difference between revisions of "2018 AMC 10A Problems/Problem 13"
m (→Solution 1) |
m (→Solution 1) |
||
Line 18: | Line 18: | ||
First, we need to realize that the crease line is just the perpendicular bisector of side <math>AB</math>, the hypotenuse of right triangle <math>\triangle ABC</math>. Call the midpoint of <math>AB</math> point <math>D</math>. Draw this line and call the intersection point with <math>AC</math> as <math>E</math>. Now, <math>\triangle ABC</math> is similar to <math>\triangle ADE</math> by <math>AA</math> similarity. Setting up the ratios, we find that | First, we need to realize that the crease line is just the perpendicular bisector of side <math>AB</math>, the hypotenuse of right triangle <math>\triangle ABC</math>. Call the midpoint of <math>AB</math> point <math>D</math>. Draw this line and call the intersection point with <math>AC</math> as <math>E</math>. Now, <math>\triangle ABC</math> is similar to <math>\triangle ADE</math> by <math>AA</math> similarity. Setting up the ratios, we find that | ||
<cmath>\frac{BC}{AC}=\frac{DE}{AD} \Rightarrow \frac{3}{4}=\frac{DE}{\frac{5}{2}} \Rightarrow DE=\frac{15}{8}.</cmath> | <cmath>\frac{BC}{AC}=\frac{DE}{AD} \Rightarrow \frac{3}{4}=\frac{DE}{\frac{5}{2}} \Rightarrow DE=\frac{15}{8}.</cmath> | ||
− | Thus, our answer is <math>\boxed{D}</math>. | + | Thus, our answer is <math>\boxed{\textbf{D) } \frac{15}{8}}</math>. |
~Nivek | ~Nivek |
Revision as of 15:06, 9 February 2018
Problem
A paper triangle with sides of lengths 3,4, and 5 inches, as shown, is folded so that point falls on point . What is the length in inches of the crease?
Solution 1
First, we need to realize that the crease line is just the perpendicular bisector of side , the hypotenuse of right triangle . Call the midpoint of point . Draw this line and call the intersection point with as . Now, is similar to by similarity. Setting up the ratios, we find that Thus, our answer is .
~Nivek
Solution 2 (if you are already out of time)
Simply make a 3x4x5 inch triangle and then cut it out (using fine rips). Then, make the fold and measure. It will be inches in length.
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.