Difference between revisions of "2005 AMC 10A Problems/Problem 21"
(added problem and solution) |
m |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | If <math> 1+2+...+n </math> evenly | + | If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]]. |
− | Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above fraction. | + | Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]]. |
− | So the problem asks us for how many | + | So the problem asks us for how many [[postive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer. |
<math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[factor]] of <math>12</math>. | <math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[factor]] of <math>12</math>. | ||
Line 17: | Line 17: | ||
So the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>. | So the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>. | ||
− | But <math>0</math> isn't a positive integer | + | But <math>0</math> isn't a positive integer, so only <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math> are possible values of <math>n</math>. |
− | Therefore the number of possible values of <math>n</math> is <math>5\ | + | Therefore the number of possible values of <math>n</math> is <math>5\Longrightarrow \mathrm{(B)}</math> |
==See Also== | ==See Also== |
Revision as of 15:35, 2 August 2006
Problem
For how many positive integers does evenly divide ?
Solution
If evenly divides , then is an integer.
Since we may substitute the RHS in the above fraction.
So the problem asks us for how many postive integers is an integer.
is an integer when is a factor of .
The factors of are , , , , , and .
So the possible values of are , , , , , and .
But isn't a positive integer, so only , , , , and are possible values of .
Therefore the number of possible values of is