Difference between revisions of "2008 AMC 10B Problems/Problem 20"

m (Solution 2)
Line 4: Line 4:
 
<math>\mathrm{(A)}\ 5/18\qquad\mathrm{(B)}\ 7/18\qquad\mathrm{(C)}\ 11/18\qquad\mathrm{(D)}\ 3/4\qquad\mathrm{(E)}\ 8/9</math>
 
<math>\mathrm{(A)}\ 5/18\qquad\mathrm{(B)}\ 7/18\qquad\mathrm{(C)}\ 11/18\qquad\mathrm{(D)}\ 3/4\qquad\mathrm{(E)}\ 8/9</math>
  
==Solution==
+
==Solution 1==
 
 
===Solution 1===
 
  
 
The easiest way is to write a table of all <math>36</math> possible outcomes, do the sums, and count good outcomes.
 
The easiest way is to write a table of all <math>36</math> possible outcomes, do the sums, and count good outcomes.
Line 22: Line 20:
 
<math>\frac{4+6+4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}</math>.
 
<math>\frac{4+6+4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}</math>.
  
===Solution 2===
+
==Solution 2==
  
 
Each die is equally likely to roll odd or even, so the probability of an odd sum is <math>\frac{1}{2}</math>.
 
Each die is equally likely to roll odd or even, so the probability of an odd sum is <math>\frac{1}{2}</math>.

Revision as of 15:46, 15 February 2021

Problem

The faces of a cubical die are marked with the numbers $1$, $2$, $2$, $3$, $3$, and $4$. The faces of another die are marked with the numbers $1$, $3$, $4$, $5$, $6$, and $8$. What is the probability that the sum of the top two numbers will be $5$, $7$, or $9$?

$\mathrm{(A)}\ 5/18\qquad\mathrm{(B)}\ 7/18\qquad\mathrm{(C)}\ 11/18\qquad\mathrm{(D)}\ 3/4\qquad\mathrm{(E)}\ 8/9$

Solution 1

The easiest way is to write a table of all $36$ possible outcomes, do the sums, and count good outcomes.

     1  3  4  5  6  8
   ------------------
1 |  2  4  5  6  7  9
2 |  3  5  6  7  8 10
2 |  3  5  6  7  8 10
3 |  4  6  7  8  9 11
3 |  4  6  7  8  9 11
4 |  5  7  8  9 10 12

We see that out of $36$ possible outcomes $4$ give the sum of $5$, $6$ the sum of $7$, and $4$ the sum of $9$, hence the resulting probability is $\frac{4+6+4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}$.

Solution 2

Each die is equally likely to roll odd or even, so the probability of an odd sum is $\frac{1}{2}$.

So we can find the probability of rolling $3$ or $11$ instead and just subtract that from $\frac{1}{2}$, which seems easier. Without writing out a table, we can see that there are two ways to make $3$, and two ways to make $11$, for a probability of $\frac{4}{36}$.

$\frac{1}{2}-\frac{4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}$.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png