Difference between revisions of "Newton's Inequality"
(→Proof) |
m (→Background) |
||
Line 1: | Line 1: | ||
== Background == | == Background == | ||
− | For <math> x_1, \ldots, x_n </math>, we define the [[symmetric sum]] <math>s_k </math> to be the coefficient of <math>t^{n-k} </math> in the polynomial <math> \prod_{i=1}^{n}(t+x_i) </math> (see [[ | + | For <math> x_1, \ldots, x_n </math>, we define the [[symmetric sum]] <math>s_k </math> to be the coefficient of <math>t^{n-k} </math> in the polynomial <math> \prod_{i=1}^{n}(t+x_i) </math> (see [[Vieta's sums]]). We define the ''symmetric average'' <math>d_k </math> to be <math> \textstyle s_k/{n \choose k} </math>. |
== Statement == | == Statement == |
Revision as of 07:37, 22 January 2018
Contents
Background
For , we define the symmetric sum to be the coefficient of in the polynomial (see Vieta's sums). We define the symmetric average to be .
Statement
For non-negative and ,
,
with equality exactly when all the are equal.
Proof
Lemma. For real , there exist real with the same symmetric averages .
Proof. We consider the derivative of . The roots of are . Without loss of generality, we assume that the increase as increases. Now for any , must have a root between and by Rolle's theorem if , and if , then is a root of times, so it must be a root of times. It follows that must have non-positive, real roots, i.e., for some non-negative reals ,
.
It follows that the symmetric sum for is , so the symmetric average .
Thus to prove Newton's theorem, it is sufficient to prove
for any . Since this is a homogenous inequality, we may normalize it so that . The inequality then becomes
.
Expanding the left side, we see that this is
.
But this is clearly equivalent to
,
which holds by the rearrangement inequality.