Difference between revisions of "2012 AMC 12A Problems/Problem 18"

m (Solution 2)
(Solution 2)
Line 18: Line 18:
  
 
-Solution by '''arowaaron'''
 
-Solution by '''arowaaron'''
 +
 +
 +
 +
==Solution 3 ==
 +
 +
By heron's formula,
 +
<math>sr=\sqrt{s(s-a)(s-b)(s-c)}</math> so we have <math>r^2=\frac{14\cdot 13 \cdot 12}{39}</math>. Hence <math>r=\sqrt{56}</math>.
 +
 +
By the law of cosines on <math>\triangle ABC</math>,
 +
<math>\cos B = \frac{25^2+27^2-26^2}{2\cdot25\cdot27}=\frac{113}{225}</math>
 +
Also <math>\sin^2 \frac{B}{2}=\frac{1-\cosB}{2}</math>. So, <math>\sin \frac{B}{2}=\frac{2\sqrt{14}}{\sqrt{15}}</math>.
 +
 +
The area of <math>\triangle BIC</math> can be calculated in 2 ways,
 +
<math>\frac{1}{2} \cdot 25 r=\frac{1}{2}BI \cdot 25 \cdot \sin \frac{B}{2}</math>. Solving this equation yields <math>BI=15</math>
  
 
== See Also ==
 
== See Also ==

Revision as of 22:00, 11 February 2018

Problem

Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3}$

Solution 1

Inscribe circle $C$ of radius $r$ inside triangle $ABC$ so that it meets $AB$ at $Q$, $BC$ at $R$, and $AC$ at $S$. Note that angle bisectors of triangle $ABC$ are concurrent at the center $O$(also $I$) of circle $C$. Let $x=QB$, $y=RC$ and $z=AS$. Note that $BR=x$, $SC=y$ and $AQ=z$. Hence $x+z=27$, $x+y=25$, and $z+y=26$. Subtracting the last 2 equations we have $x-z=-1$ and adding this to the first equation we have $x=13$.

By Heron's formula for the area of a triangle we have that the area of triangle $ABC$ is $\sqrt{39(14)(13)(12)}$. On the other hand the area is given by $(1/2)25r+(1/2)26r+(1/2)27r$. Then $39r=\sqrt{39(14)(13)(12)}$ so that $r^2=56$.

Since the radius of circle $O$ is perpendicular to $BC$ at $R$, we have by the pythagorean theorem $BO^2=BI^2=r^2+x^2=56+169=225$ so that $BI=15$.

Solution 2

We can use mass points and Stewart's to solve this problem. Because we are looking at the Incenter we then label $A$ with a mass of $25$, $B$ with $26$, and $C$ with $27$. We also label where the angle bisectors intersect the opposite side $A'$, $B'$, and $C'$ correspondingly. It follows then that point $B'$ has mass 52. Which means that $\overline{BB'}$ is split into a $2:1$ ratio. We can then use Stewart's to find $\overline{BB'}$. So we have $25^2\frac{27}{2} + 27^2\frac{25}{2} = \frac{25 \cdot 26 \cdot 27}{4} + 26\overline{BB'}^2$. Solving we get $\overline{BB'} = \frac{45}{2}$. Plugging it in we get $\overline{BI} = 15$. Therefore the answer is $\boxed{(A)\:15.}$

-Solution by arowaaron


Solution 3

By heron's formula, $sr=\sqrt{s(s-a)(s-b)(s-c)}$ so we have $r^2=\frac{14\cdot 13 \cdot 12}{39}$. Hence $r=\sqrt{56}$.

By the law of cosines on $\triangle ABC$, $\cos B = \frac{25^2+27^2-26^2}{2\cdot25\cdot27}=\frac{113}{225}$ Also $\sin^2 \frac{B}{2}=\frac{1-\cosB}{2}$ (Error compiling LaTeX. Unknown error_msg). So, $\sin \frac{B}{2}=\frac{2\sqrt{14}}{\sqrt{15}}$.

The area of $\triangle BIC$ can be calculated in 2 ways, $\frac{1}{2} \cdot 25 r=\frac{1}{2}BI \cdot 25 \cdot \sin \frac{B}{2}$. Solving this equation yields $BI=15$

See Also

2012 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png