Difference between revisions of "2017 AMC 8 Problems/Problem 25"
(→Solution) |
m (→Solution: .....I added clarification:)) |
||
Line 9: | Line 9: | ||
==Solution== | ==Solution== | ||
− | Let the centers of the circles containing arcs <math>\overarc{SR}</math> and <math>\overarc{TR}</math> be <math>S'</math> and <math>T'</math>, respectively. Extend <math>\overline{US}</math> and <math>\overline{UT}</math> to <math>S'</math> and <math>T'</math>. The area of the figure is equal to the area of equilateral triangle <math>\triangle US'T'</math> minus the combined area of the <math>2</math> sectors of the circles. | + | Let the centers of the circles containing arcs <math>\overarc{SR}</math> and <math>\overarc{TR}</math> be <math>S'</math> and <math>T'</math>, respectively. Extend <math>\overline{US}</math> and <math>\overline{UT}</math> to <math>S'</math> and <math>T'</math>, and connect point <math>S'</math> with point <math>T'</math>. We can clearly see that <math>\triangle AS'T'</math> is an equilateral triangle, because two of its angles are <math>60^\circ</math>, which is the degree measure of <math>\frac{1}{6}</math> a circle. The area of the figure is equal to the area of equilateral triangle <math>\triangle US'T'</math> minus the combined area of the <math>2</math> sectors of the circles. Using the area formula for an equilateral triangle, <math>\frac{\sqrt{3}}{4} \cdot a,</math> where <math>a</math> is the side length of the equilateral triangle, the area of <math>\triangle US'T'</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2</math> times one sixth <math>\pi \cdot r^2</math>, which is <math>2 \cdot \frac 16 \cdot \pi \cdot 2^2 = \frac{4\pi}{3}.</math> Our final answer is then <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math> |
<asy>draw((1,1.732)--(2,3.464)--(3,1.732)); | <asy>draw((1,1.732)--(2,3.464)--(3,1.732)); |
Revision as of 23:41, 4 January 2018
Problem 25
In the figure shown, and
are line segments each of length 2, and
. Arcs
and
are each one-sixth of a circle with radius 2. What is the area of the region shown?
Solution
Let the centers of the circles containing arcs and
be
and
, respectively. Extend
and
to
and
, and connect point
with point
. We can clearly see that
is an equilateral triangle, because two of its angles are
, which is the degree measure of
a circle. The area of the figure is equal to the area of equilateral triangle
minus the combined area of the
sectors of the circles. Using the area formula for an equilateral triangle,
where
is the side length of the equilateral triangle, the area of
is
The combined area of the
sectors is
times one sixth
, which is
Our final answer is then
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.