Difference between revisions of "2017 IMO Problems/Problem 1"

(Created page with "For each integer <math>a_0 > 1</math>, define the sequence <math>a_0, a_1, a_2, \ldots</math> for <math>n \geq 0</math> as <cmath>a_{n+1} = \begin{cases} \sqrt{a_n} & \text{i...")
 
Line 1: Line 1:
 +
==Problem==
 +
 
For each integer <math>a_0 > 1</math>, define the sequence <math>a_0, a_1, a_2, \ldots</math> for <math>n \geq 0</math> as
 
For each integer <math>a_0 > 1</math>, define the sequence <math>a_0, a_1, a_2, \ldots</math> for <math>n \geq 0</math> as
 
<cmath>a_{n+1} =  
 
<cmath>a_{n+1} =  
Line 6: Line 8:
 
\end{cases}
 
\end{cases}
 
</cmath>Determine all values of <math>a_0</math> such that there exists a number <math>A</math> such that <math>a_n = A</math> for infinitely many values of <math>n</math>.
 
</cmath>Determine all values of <math>a_0</math> such that there exists a number <math>A</math> such that <math>a_n = A</math> for infinitely many values of <math>n</math>.
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See Also==
 +
 +
{{IMO box|year=2017|before=First Problem|num-a=2}}

Revision as of 00:38, 19 November 2023

Problem

For each integer $a_0 > 1$, define the sequence $a_0, a_1, a_2, \ldots$ for $n \geq 0$ as \[a_{n+1} =  \begin{cases} \sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\ a_n + 3 & \text{otherwise.} \end{cases}\]Determine all values of $a_0$ such that there exists a number $A$ such that $a_n = A$ for infinitely many values of $n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2017 IMO (Problems) • Resources
Preceded by
First Problem
1 2 3 4 5 6 Followed by
Problem 2
All IMO Problems and Solutions