Difference between revisions of "2000 AMC 12 Problems/Problem 17"
m (→Solution) |
m (→Solution (with minimal trig)) |
||
Line 35: | Line 35: | ||
Alternatively, one could notice that OC approaches the value 1/2 as theta gets close to 90 degrees. The only choice that is consistent with this is (D). | Alternatively, one could notice that OC approaches the value 1/2 as theta gets close to 90 degrees. The only choice that is consistent with this is (D). | ||
− | ==Solution (with minimal trig)== | + | == Solution 3 (with minimal trig) == |
Let's assign a value to <math>\theta</math> so we don't have to use trig functions to solve. <math>60</math> is a good value for <math>\theta</math>, because then we have a <math>30-60-90 \triangle</math> -- <math>\angle BAC=90</math> because <math>AB</math> is tangent to Circle <math>O</math>. | Let's assign a value to <math>\theta</math> so we don't have to use trig functions to solve. <math>60</math> is a good value for <math>\theta</math>, because then we have a <math>30-60-90 \triangle</math> -- <math>\angle BAC=90</math> because <math>AB</math> is tangent to Circle <math>O</math>. | ||
Revision as of 16:14, 29 August 2017
Problem
A circle centered at has radius and contains the point . The segment is tangent to the circle at and . If point lies on and bisects , then
Solution 1
Since is tangent to the circle, is a right triangle. This means that , and . By the Angle Bisector Theorem, We multiply both sides by to simplify the trigonometric functions, Since , . Therefore, the answer is .
Solution 2
Alternatively, one could notice that OC approaches the value 1/2 as theta gets close to 90 degrees. The only choice that is consistent with this is (D).
Solution 3 (with minimal trig)
Let's assign a value to so we don't have to use trig functions to solve. is a good value for , because then we have a -- because is tangent to Circle .
Using our special right triangle, since , , and .
Let . Then . since bisects , we can use the angle bisector theorem:
.
Now, we only have to use a bit of trig to guess and check: the only trig facts we need to know to finish the problem is:
.
With a bit of guess and check, we get that the answer is .
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.