Difference between revisions of "Carnot's Theorem"
(→Carnot's Theorem) |
|||
Line 48: | Line 48: | ||
− | = | + | =Carnot's Theorem= |
'''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in AB</math>, [[perpendicular]]s to the sides <math>BC</math>, <math>AC</math>, and <math>AB</math> at <math>A_1</math>, <math>B_1</math>, and <math>C_1</math> are [[concurrent]] [[iff|if and only if]] <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>. | '''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in AB</math>, [[perpendicular]]s to the sides <math>BC</math>, <math>AC</math>, and <math>AB</math> at <math>A_1</math>, <math>B_1</math>, and <math>C_1</math> are [[concurrent]] [[iff|if and only if]] <math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2</math>. |
Revision as of 18:29, 11 December 2017
Carnot's Theorem states that in a triangle , the signed sum of perpendicular distances from the circumcenter to the sides (i.e., signed lengths of the pedal lines from ) is:
where r is the inradius and R is the circumradius. The sign of the distance is chosen to be negative iff the entire segment OO_i lies outside the triangle. Explicitly,
where is the area of triangle .
Weisstein, Eric W. "Carnot's Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CarnotsTheorem.html
Carnot's Theorem
Carnot's Theorem states that in a triangle with , , and , perpendiculars to the sides , , and at , , and are concurrent if and only if .
Proof
Only if: Assume that the given perpendiculars are concurrent at . Then, from the Pythagorean Theorem, , , , , , and . Substituting each and every one of these in and simplifying gives the desired result.
If: Consider the intersection of the perpendiculars from and . Call this intersection point , and let be the perpendicular from to . From the other direction of the desired result, we have that . We also have that , which implies that . This is a difference of squares, which we can easily factor into . Note that , so we have that . This implies that , which gives the desired result.
Problems
Olympiad
is a triangle. Take points on the perpendicular bisectors of respectively. Show that the lines through perpendicular to respectively are concurrent. (Source)