Difference between revisions of "1950 AHSME Problems/Problem 33"

(Solution)
(Solution)
Line 14: Line 14:
 
A circular pipe with diameter 1 inch and height h has a volume of <math>\pi \left(\frac{1}{2}\right)^2h=\frac{\pi h}{4}</math>. A pipe with diameter 6 inches and height h has volume <math>\pi \left(\frac{6}{2}\right)^2h=9\pi h</math>. To find how many 1-pipes fit in a 6-pipe, we divide: <math>\frac{9\pi h}{\frac{\pi h}{4}}=\frac{9*4\pi h}{\pi h}=\frac{36\pi h}{\pi h}=36 \textbf{(D)}</math>
 
A circular pipe with diameter 1 inch and height h has a volume of <math>\pi \left(\frac{1}{2}\right)^2h=\frac{\pi h}{4}</math>. A pipe with diameter 6 inches and height h has volume <math>\pi \left(\frac{6}{2}\right)^2h=9\pi h</math>. To find how many 1-pipes fit in a 6-pipe, we divide: <math>\frac{9\pi h}{\frac{\pi h}{4}}=\frac{9*4\pi h}{\pi h}=\frac{36\pi h}{\pi h}=36 \textbf{(D)}</math>
  
If the ratio of similar length of similar shapes is x, then the ratio between area is <math>x^2</math>. Therefore, since the ratio between diameters is <math>1/6</math>, the ratio between area is <math>1/36</math>, so <math>36</math> pipes of diameter <math>1</math> are required.
+
If the ratio of similar length of similar shapes is x, then the ratio between area is <math>x^2</math>. Therefore, since the ratio between diameters is <math>1/6</math>, the ratio between area is <math>1/36 textbf{(D)}</math>, so <math>36</math> pipes of diameter <math>1</math> are required.
  
 
==See Also==
 
==See Also==

Revision as of 15:37, 30 July 2017

Problem

The number of circular pipes with an inside diameter of $1$ inch which will carry the same amount of water as a pipe with an inside diameter of $6$ inches is:

$\textbf{(A)}\ 6\pi \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 36\pi$

Solution

It must be assumed that the pipes have an equal height.

A circular pipe with diameter 1 inch and height h has a volume of $\pi \left(\frac{1}{2}\right)^2h=\frac{\pi h}{4}$. A pipe with diameter 6 inches and height h has volume $\pi \left(\frac{6}{2}\right)^2h=9\pi h$. To find how many 1-pipes fit in a 6-pipe, we divide: $\frac{9\pi h}{\frac{\pi h}{4}}=\frac{9*4\pi h}{\pi h}=\frac{36\pi h}{\pi h}=36 \textbf{(D)}$

If the ratio of similar length of similar shapes is x, then the ratio between area is $x^2$. Therefore, since the ratio between diameters is $1/6$, the ratio between area is $1/36 textbf{(D)}$, so $36$ pipes of diameter $1$ are required.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 32
Followed by
Problem 34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png