Difference between revisions of "1969 Canadian MO Problems/Problem 6"

 
m
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Note that for any positive integer <math>\displaystyle  n,</math> <math>\displaystyle  n\cdot n!+(n-1)\cdot(n-1)!=(n^2+n-1)(n-1)!=(n+1)!-(n-1)!.</math>
+
Note that for any [[positive integer]] <math>\displaystyle  n,</math> <math>\displaystyle  n\cdot n!+(n-1)\cdot(n-1)!=(n^2+n-1)(n-1)!=(n+1)!-(n-1)!.</math>
 
Hence, pairing terms in the series will telescope most of the terms.
 
Hence, pairing terms in the series will telescope most of the terms.
  
If <math>\displaystyle  n</math> is odd, <math>\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -2!+2!-0!.</math>
+
If <math>\displaystyle  n</math> is [[odd integer | odd]], <math>\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -2!+2!-0!.</math>
  
If <math>\displaystyle  n</math> is even, <math>\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -3!+3!-1!.</math>
+
If <math>\displaystyle  n</math> is [[even integer | even]], <math>\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -3!+3!-1!.</math>
 
In both cases, the expression telescopes into <math>\displaystyle  (n+1)!-1.</math>
 
In both cases, the expression telescopes into <math>\displaystyle  (n+1)!-1.</math>
  

Revision as of 16:07, 12 October 2006

Problem

Find the sum of $\displaystyle 1\cdot 1!+2\cdot 2!+3\cdot 3!+\cdots+(n-1)(n-1)!+n\cdot n!$, where $\displaystyle  n!=n(n-1)(n-2)\cdots2\cdot1$.

Solution

Note that for any positive integer $\displaystyle  n,$ $\displaystyle  n\cdot n!+(n-1)\cdot(n-1)!=(n^2+n-1)(n-1)!=(n+1)!-(n-1)!.$ Hence, pairing terms in the series will telescope most of the terms.

If $\displaystyle  n$ is odd, $\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -2!+2!-0!.$

If $\displaystyle  n$ is even, $\displaystyle  (n+1)!-(n-1)!+(n-1)!-(n-3)!\cdots -3!+3!-1!.$ In both cases, the expression telescopes into $\displaystyle  (n+1)!-1.$