Difference between revisions of "1969 Canadian MO Problems/Problem 10"
m (→Solution) |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>\displaystyle ABC</math> be the right-angled isosceles triangle whose equal sides have length 1. <math>\displaystyle P</math> is a point on the hypotenuse, and the feet of the | + | Let <math>\displaystyle ABC</math> be the right-angled isosceles triangle whose equal sides have length 1. <math>\displaystyle P</math> is a point on the [[hypotenuse]], and the feet of the [[perpendicular]]s from <math>\displaystyle P</math> to the other sides are <math>\displaystyle Q</math> and <math>\displaystyle R</math>. Consider the areas of the triangles <math>\displaystyle APQ</math> and <math>\displaystyle PBR</math>, and the area of the [[rectangle]] <math>\displaystyle QCRP</math>. Prove that regardless of how <math>\displaystyle P</math> is chosen, the largest of these three areas is at least <math>\displaystyle 2/9</math>. |
== Solution == | == Solution == | ||
− | Let <math>\displaystyle AQ=x.</math> Because [[triangle]]s <math>\displaystyle APQ</math> and <math>\displaystyle BPR</math> both contain a [[right angle]] and a <math>\displaystyle 45^\circ</math> angle, they are [[isosceles]] [[right triangle]]s. Hence, <math>\displaystyle PQ=RC=x</math> and <math>\displaystyle QC=PR=BR=1-x.</math> | + | Let <math>\displaystyle AQ=x.</math> Because [[triangle]]s <math>\displaystyle APQ</math> and <math>\displaystyle BPR</math> both contain a [[right angle]] and a <math>\displaystyle 45^\circ</math> angle, they are [[isosceles triangle | isosceles]] [[right triangle]]s. Hence, <math>\displaystyle PQ=RC=x</math> and <math>\displaystyle QC=PR=BR=1-x.</math> |
Now let's consider when <math>\displaystyle \frac13 <x<\frac23,</math> or else one of triangles <math>\displaystyle APQ</math> and <math>\displaystyle PBR</math> will automatically have area greater than <math>\displaystyle \frac29.</math> In this case, <math>\displaystyle [QCRP]>[ABC]-[APQ]-[PBR]>\frac29.</math> Therefore, one of these three figures will always have area greater than <math>\displaystyle \frac29,</math> regardless of where <math>\displaystyle P</math> is chosen. | Now let's consider when <math>\displaystyle \frac13 <x<\frac23,</math> or else one of triangles <math>\displaystyle APQ</math> and <math>\displaystyle PBR</math> will automatically have area greater than <math>\displaystyle \frac29.</math> In this case, <math>\displaystyle [QCRP]>[ABC]-[APQ]-[PBR]>\frac29.</math> Therefore, one of these three figures will always have area greater than <math>\displaystyle \frac29,</math> regardless of where <math>\displaystyle P</math> is chosen. |
Revision as of 15:02, 13 October 2006
Problem
Let be the right-angled isosceles triangle whose equal sides have length 1. is a point on the hypotenuse, and the feet of the perpendiculars from to the other sides are and . Consider the areas of the triangles and , and the area of the rectangle . Prove that regardless of how is chosen, the largest of these three areas is at least .
Solution
Let Because triangles and both contain a right angle and a angle, they are isosceles right triangles. Hence, and
Now let's consider when or else one of triangles and will automatically have area greater than In this case, Therefore, one of these three figures will always have area greater than regardless of where is chosen.