Difference between revisions of "Cauchy-Schwarz Inequality"
m |
m (spacing, caps) |
||
Line 1: | Line 1: | ||
The '''Cauchy-Schwarz Inequality''' (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers <math>a_1,a_2,\ldots,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following [[inequality]] is always true: | The '''Cauchy-Schwarz Inequality''' (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers <math>a_1,a_2,\ldots,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following [[inequality]] is always true: | ||
− | |||
<math> \displaystyle ({a_1}^2+{a_2}^2+ \cdots +{a_n}^2)({b_1}^2+{b_2}^2+ \cdots +{b_n}^2) \geq (a_1b_1+a_2b_2+ \cdots +a_nb_n)^2</math> | <math> \displaystyle ({a_1}^2+{a_2}^2+ \cdots +{a_n}^2)({b_1}^2+{b_2}^2+ \cdots +{b_n}^2) \geq (a_1b_1+a_2b_2+ \cdots +a_nb_n)^2</math> | ||
− | + | [[Equality condition|Equality]] holds if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}= \cdots =\frac{a_n}{b_n}</math>. | |
− | [[Equality condition| | ||
− | |||
== Proof == | == Proof == | ||
Line 18: | Line 15: | ||
where <math>A=\sum_{i=1}^n a_i^2</math>, <math>B=2\sum_{j=1}^n a_jb_j</math>, and <math>C=\sum_{k=1}^n b_k^2.</math>. By the [[Trivial inequality | Trivial Inequality]], we know that the left-hand-side of the original equation is always at least 0, so either both roots are [[complex numbers]], or there is a double root at <math>x=0</math>. Either way, the [[discriminant]] of the equation is nonpositive. Taking the [[discriminant]], <math>B^2-4AC \leq 0</math> and substituting the above values of A, B, and C leaves us with the Cauchy-Schwarz Inequality, | where <math>A=\sum_{i=1}^n a_i^2</math>, <math>B=2\sum_{j=1}^n a_jb_j</math>, and <math>C=\sum_{k=1}^n b_k^2.</math>. By the [[Trivial inequality | Trivial Inequality]], we know that the left-hand-side of the original equation is always at least 0, so either both roots are [[complex numbers]], or there is a double root at <math>x=0</math>. Either way, the [[discriminant]] of the equation is nonpositive. Taking the [[discriminant]], <math>B^2-4AC \leq 0</math> and substituting the above values of A, B, and C leaves us with the Cauchy-Schwarz Inequality, | ||
− | |||
<math> \displaystyle (a_1b_1+a_2b_2+ \cdots +a_nb_n)^2 \leq (a_1^2+a_2^2+ \cdots +a_n^2)(b_1^2+b_2^2+ \cdots +b_n^2),</math> | <math> \displaystyle (a_1b_1+a_2b_2+ \cdots +a_nb_n)^2 \leq (a_1^2+a_2^2+ \cdots +a_n^2)(b_1^2+b_2^2+ \cdots +b_n^2),</math> | ||
− | |||
or, in the more compact [[sigma notation]], | or, in the more compact [[sigma notation]], | ||
<math>{\left(\sum a_ib_i\right)}^2 \leq \left(\sum a_i^2\right)\left(\sum b_i^2\right).</math> | <math>{\left(\sum a_ib_i\right)}^2 \leq \left(\sum a_i^2\right)\left(\sum b_i^2\right).</math> | ||
− | |||
Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}= \cdots =\frac{a_n}{b_n}</math>. | Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}= \cdots =\frac{a_n}{b_n}</math>. | ||
Line 32: | Line 26: | ||
== Contest Problem Solving == | == Contest Problem Solving == | ||
This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the [[United States of America Mathematics Olympiad | USAMO]] and [[International Mathematics Olympiad | IMO]]. | This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the [[United States of America Mathematics Olympiad | USAMO]] and [[International Mathematics Olympiad | IMO]]. | ||
− | |||
− | |||
== Other Resources == | == Other Resources == |
Revision as of 20:12, 2 February 2007
The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers and , the following inequality is always true:
Equality holds if and only if .
Proof
There are many ways to prove this; one of the more well-known is to consider the equation
.
Expanding, we find the equation to be of the form
where , , and . By the Trivial Inequality, we know that the left-hand-side of the original equation is always at least 0, so either both roots are complex numbers, or there is a double root at . Either way, the discriminant of the equation is nonpositive. Taking the discriminant, and substituting the above values of A, B, and C leaves us with the Cauchy-Schwarz Inequality,
or, in the more compact sigma notation,
Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if .
Contest Problem Solving
This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the USAMO and IMO.
Other Resources
Books
- The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by J. Michael Steele.
- Problem Solving Strategies by Arthur Engel contains significant material on inequalities.