Difference between revisions of "2016 AMC 8 Problems/Problem 2"
m (→Solution 1) |
(→Solution) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24</math> | <math>\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24</math> | ||
− | + | ||
<asy>draw((0,4)--(0,0)--(6,0)--(6,8)--(0,8)--(0,4)--(6,8)--(0,0)); | <asy>draw((0,4)--(0,0)--(6,0)--(6,8)--(0,8)--(0,4)--(6,8)--(0,0)); | ||
label("$A$", (0,0), SW); | label("$A$", (0,0), SW); |
Revision as of 18:55, 29 June 2019
In rectangle , and . Point is the midpoint of . What is the area of ?
Solution 1
Use the triangle area formula for triangles: where is the area, is the base, and is the height. This equation gives us .
Solution 2
A triangle with the same height and base as a rectangle is half of the rectangle's area. This means that a triangle with half of the base of the rectangle and also the same height means its area is one quarter of the rectangle's area. Therefore, we get .
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.