Difference between revisions of "1954 AHSME Problems/Problem 40"
(→Solution 2) |
(→Solution 2) |
||
Line 11: | Line 11: | ||
<math>\left (a+\frac{1}{a} \right )^2=3 \implies a+\frac{1}{a} =\sqrt{3}</math> | <math>\left (a+\frac{1}{a} \right )^2=3 \implies a+\frac{1}{a} =\sqrt{3}</math> | ||
− | <math>a+\frac{1}{a} = \sqrt{3} \implies (a+\frac{1}{a})^3=sqrt{ | + | <math>a+\frac{1}{a} =\sqrt{3} \implies (a+\frac{1}{a})^3=\sqrt{3^3}</math> |
− | <math>(a+\frac{1}{a})^3=sqrt{ | + | <math>(a+\frac{1}{a})^3=\sqrt{3^3}\implies a^3+3a^2\frac{1}{a}+3a\frac{1}{a^2}+\frac{1}{a^3}=\sqrt{27}</math> |
<math>a^3+3a^2\frac{1}{a}+3a\frac{1}{a^2}+\frac{1}{a^3}=\sqrt{27} \implies a^3+\frac{1}{a^3}+3a+\frac{3}{a}=\sqrt{27}</math> | <math>a^3+3a^2\frac{1}{a}+3a\frac{1}{a^2}+\frac{1}{a^3}=\sqrt{27} \implies a^3+\frac{1}{a^3}+3a+\frac{3}{a}=\sqrt{27}</math> |
Revision as of 15:21, 15 April 2017
Problem 40
If , then equals:
Solution 1
,
Solution 2