Difference between revisions of "2015 USAJMO Problems/Problem 5"
AllenWang314 (talk | contribs) (→Solution) |
AllenWang314 (talk | contribs) (→Solution 2) |
||
Line 15: | Line 15: | ||
Therefore, the ratio equals <math>\frac{AD\cdot DC}{DB\cdot BC}.</math> | Therefore, the ratio equals <math>\frac{AD\cdot DC}{DB\cdot BC}.</math> | ||
− | Now let <math>Y</math> be a point of <math>AC</math> such that <math>\angle{ABE}=\angle{CBY}</math>. We apply the above identities for <math>Y</math> to get that <math>\frac{CY}{ | + | Now let <math>Y</math> be a point of <math>AC</math> such that <math>\angle{ABE}=\angle{CBY}</math>. We apply the above identities for <math>Y</math> to get that <math>\frac{CY}{YA}\cdot \frac{CE}{EA}=\left(\frac{CD}{DA}\right)^2</math>. So <math>\angle{CDY}=\angle{EDA}</math>, the converse follows since all our steps are reversible. |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:25, 13 April 2017
Contents
Problem
Let be a cyclic quadrilateral. Prove that there exists a point on segment such that and if and only if there exists a point on segment such that and .
Solution 1
Note that lines are isogonal in , so an inversion centered at with power composed with a reflection about the angle bisector of swaps the pairs and . Thus, so that is a harmonic quadrilateral. By symmetry, if exists, then . We have shown the two conditions are equivalent, whence both directions follow
Solution 2
All angles are directed. Note that lines are isogonal in and are isogonal in . From the law of sines it follows that
Therefore, the ratio equals
Now let be a point of such that . We apply the above identities for to get that . So , the converse follows since all our steps are reversible.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See Also
2015 USAJMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |