Difference between revisions of "2017 AIME II Problems/Problem 5"
The turtle (talk | contribs) (Created page with "<math>\textbf{Problem 5}</math> A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are <math>189</math>, <math>320</ma...") |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are <math>189</math>, <math>320</math>, <math>287</math>, <math>234</math>, <math>x</math>, and <math>y</math>. Find the greatest possible value of <math>x+y</math>. | A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are <math>189</math>, <math>320</math>, <math>287</math>, <math>234</math>, <math>x</math>, and <math>y</math>. Find the greatest possible value of <math>x+y</math>. | ||
− | + | ==Solution== | |
Let these four numbers be <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>, where <math>a>b>c>d</math>. <math>x+y</math> needs to be maximized, so let <math>x=a+b</math> and <math>y=a+c</math> because these are the two largest pairwise sums. Now <math>x+y=2a+b+c</math> needs to be maximized. Notice <math>2a+b+c=3(a+b+c+d)-(a+2b+2c+3d)=3((a+c)+(b+d))-((a+d)+(b+c)+(b+d)+(c+d))</math>. No matter how the numbers <math>189</math>, <math>320</math>, <math>287</math>, and <math>234</math> are assigned to the values <math>a+d</math>, <math>b+c</math>, <math>b+d</math>, and <math>c+d</math>, the sum <math>(a+d)+(b+c)+(b+d)+(c+d)</math> will always be <math>189+320+287+234</math>. Therefore we need to maximize <math>3((a+c)+(b+d))-(189+320+287+234)</math>. The maximum value of <math>(a+c)+(b+d)</math> is achieved when we let <math>a+c</math> and <math>b+d</math> be <math>320</math> and <math>287</math> because these are the two largest pairwise sums besides <math>x</math> and <math>y</math>. Therefore, the maximum possible value of <math>x+y=3(320+287)-(189+320+287+234)=\boxed{791}</math>. | Let these four numbers be <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>, where <math>a>b>c>d</math>. <math>x+y</math> needs to be maximized, so let <math>x=a+b</math> and <math>y=a+c</math> because these are the two largest pairwise sums. Now <math>x+y=2a+b+c</math> needs to be maximized. Notice <math>2a+b+c=3(a+b+c+d)-(a+2b+2c+3d)=3((a+c)+(b+d))-((a+d)+(b+c)+(b+d)+(c+d))</math>. No matter how the numbers <math>189</math>, <math>320</math>, <math>287</math>, and <math>234</math> are assigned to the values <math>a+d</math>, <math>b+c</math>, <math>b+d</math>, and <math>c+d</math>, the sum <math>(a+d)+(b+c)+(b+d)+(c+d)</math> will always be <math>189+320+287+234</math>. Therefore we need to maximize <math>3((a+c)+(b+d))-(189+320+287+234)</math>. The maximum value of <math>(a+c)+(b+d)</math> is achieved when we let <math>a+c</math> and <math>b+d</math> be <math>320</math> and <math>287</math> because these are the two largest pairwise sums besides <math>x</math> and <math>y</math>. Therefore, the maximum possible value of <math>x+y=3(320+287)-(189+320+287+234)=\boxed{791}</math>. | ||
+ | |||
+ | =See Also= | ||
+ | {{AIME box|year=2017|n=II|num-b=4|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 11:52, 23 March 2017
Problem
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are , , , , , and . Find the greatest possible value of .
Solution
Let these four numbers be , , , and , where . needs to be maximized, so let and because these are the two largest pairwise sums. Now needs to be maximized. Notice . No matter how the numbers , , , and are assigned to the values , , , and , the sum will always be . Therefore we need to maximize . The maximum value of is achieved when we let and be and because these are the two largest pairwise sums besides and . Therefore, the maximum possible value of .
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.