Difference between revisions of "2017 AMC 10B Problems/Problem 19"

(Solution)
(Solution 3)
Line 20: Line 20:
 
Since <math>ABC</math> is equilateral and <math>A</math>, <math>B</math>, <math>B'</math> are collinear, we already know <math>\angle{A'AB'}=180-60=120</math>
 
Since <math>ABC</math> is equilateral and <math>A</math>, <math>B</math>, <math>B'</math> are collinear, we already know <math>\angle{A'AB'}=180-60=120</math>
 
Similarly from above we know <math>AB'</math> and <math>A'A</math> to be <math>4x</math>, and <math>3x</math> respectively. Thus the area of <math>\Delta{AA'B'}</math> is <math>\frac{1}{2}\cdot 4x\cdot 3x \cdot \sin{120}=3x^2\cdot\sqrt{3}</math>. Likewise we can find <math>BB'C', \text{ and } CC'A'</math> to also be <math>3x^2\cdot\sqrt{3}</math>.
 
Similarly from above we know <math>AB'</math> and <math>A'A</math> to be <math>4x</math>, and <math>3x</math> respectively. Thus the area of <math>\Delta{AA'B'}</math> is <math>\frac{1}{2}\cdot 4x\cdot 3x \cdot \sin{120}=3x^2\cdot\sqrt{3}</math>. Likewise we can find <math>BB'C', \text{ and } CC'A'</math> to also be <math>3x^2\cdot\sqrt{3}</math>.
<math>[A'B'C']=[AA'B']+[BB'C']+[CC'A']+[ABC]=3\cdot3x^2\cdot\sqrt{3}+\frac{x\sqrt{3}}{2}=\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)</math>.
+
<math>[A'B'C']=[AA'B']+[BB'C']+[CC'A']+[ABC]=3\cdot3x^2\cdot\sqrt{3}+\frac{x^2\sqrt{3}}{4}=\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)</math>.
 
Therefore the ratio of <math>[A'B'C']</math> to <math>[ABC]</math> is <math>\frac{\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)}{\frac{x^2\sqrt{3}}{4}}=\boxed{\textbf{(E) } 37 : 1}</math>
 
Therefore the ratio of <math>[A'B'C']</math> to <math>[ABC]</math> is <math>\frac{\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)}{\frac{x^2\sqrt{3}}{4}}=\boxed{\textbf{(E) } 37 : 1}</math>
  

Revision as of 01:06, 25 February 2017

Problem

Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A)}\ 9:1\qquad\textbf{(B)}\ 16:1\qquad\textbf{(C)}\ 25:1\qquad\textbf{(D)}\ 36:1\qquad\textbf{(E)}\ 37:1$

Solution

Solution 1

Note that by symmetry, $\triangle A'B'C'$ is also equilateral. Therefore, we only need to find one of the sides of $A'B'C'$ to determine the area ratio. WLOG, let $AB = BC = CA = 1$. Therefore, $BB' = 3$ and $BC' = 4$. Also, $\angle B'BC' = 120^{\circ}$, so by the Law of Cosines, $B'C' = \sqrt{37}$. Therefore, the answer is $(\sqrt{37})^2 : 1^2 = \boxed{\textbf{(E) } 37 : 1}$

Solution 2

As mentioned in the first solution, $\triangle A'B'C'$ is equilateral. WLOG, let $AB=2$. Let $D$ be on the line passing through $AB$ such that $A'D$ is perpendicular to $AB$. Note that $\triangle A'DA$ is a 30-60-90 with right angle at $D$. Since $AA'=6$, $AD=3$ and $A'D=3\sqrt{3}$. So we know that $DB'=11$. Note that $\triangle A'DB'$ is a right triangle with right angle at $D$. So by the Pythagorean theorem, we find $A'B'= \sqrt{(3\sqrt{3})^2 + 11^2} = 2\sqrt{37}.$ Therefore, the answer is $(2\sqrt{37})^2 : 2^2 = \boxed{\textbf{(E) } 37 : 1}$.

Solution 3

Let $AB=BC=CA=x$. We start by noting that we can just write $AB'$ as just $AB+BB'=4AB$. Similarly $BC'=4BC$, and $CA'=4CA$. We can evaluate the area of triangle $ABC$ by simply using Heron's formula, $[ABC]=\sqrt{\frac{3x}{2}\cdot {\Bigg(\frac{3x}{2}-x\Bigg)}^3}=\frac{x^2\sqrt{3}}{4}$. Next in order to evaluate $A'B'C'$ we need to evaluate the area of the larger triangles $AA'B',BB'C', \text{ and } CC'A'$. In this solution we shall just compute $1$ of these as the others are trivially equivalent. In order to compute the area of $\Delta{AA'B'}$ we can use the formula $[XYZ]=\frac{1}{2}xy\cdot\sin{z}$. Since $ABC$ is equilateral and $A$, $B$, $B'$ are collinear, we already know $\angle{A'AB'}=180-60=120$ Similarly from above we know $AB'$ and $A'A$ to be $4x$, and $3x$ respectively. Thus the area of $\Delta{AA'B'}$ is $\frac{1}{2}\cdot 4x\cdot 3x \cdot \sin{120}=3x^2\cdot\sqrt{3}$. Likewise we can find $BB'C', \text{ and } CC'A'$ to also be $3x^2\cdot\sqrt{3}$. $[A'B'C']=[AA'B']+[BB'C']+[CC'A']+[ABC]=3\cdot3x^2\cdot\sqrt{3}+\frac{x^2\sqrt{3}}{4}=\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)$. Therefore the ratio of $[A'B'C']$ to $[ABC]$ is $\frac{\sqrt{3}\cdot\Bigg(9x^2+\frac{x^2}{4}\Bigg)}{\frac{x^2\sqrt{3}}{4}}=\boxed{\textbf{(E) } 37 : 1}$

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png