Difference between revisions of "2017 AMC 10B Problems/Problem 17"
m (Changing back to math mode because textit does not render) |
Silverlion (talk | contribs) (→Solution) |
||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
− | + | Case 1: monotonous numbers with digits in ascending order | |
+ | |||
+ | There are <math>\Sigma_{n=1}^{9} \binom{9}{n}</math> ways to choose n digits from the digits 1 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in ascending order. Note that 0 is not included since it will always be a leading digit and that is not allowed. The sum is equivalent to <math>\Sigma_{n=0}^{9} \binom{9}{n} -\binom{9}{0} = 2^9 - 1 = 511.</math> | ||
+ | |||
+ | Case 2: monotonous numbers with digits in descending order | ||
+ | |||
+ | There are <math>\Sigma_{n=1}^{10} \binom{10}{n}</math> ways to choose n digits from the digits 0 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in descending order. Note that 0 is included since we are allowed to end numbers with zeros. The sum is equivalent to <math>\Sigma_{n=0}^{10} \binom{10}{n} -\binom{10}{0} = 2^{10} - 1 = 1023.</math> We discard the number 0 since it is not positive. Thus there are <math>1022</math> here. | ||
+ | |||
+ | Since the 1-digit numbers 1 to 9 satisfy both case 1 and case 2, we have overcounted by 9. Thus there are <math>511+1022-9=\boxed{\textbf{B} \ 1524}</math> monotonous numbers. | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=16|num-a=18}} | {{AMC10 box|year=2017|ab=B|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 09:56, 17 February 2017
- The following problem is from both the 2017 AMC 12B #11 and 2017 AMC 10B #17, so both problems redirect to this page.
Problem
Call a positive integer if it is a one-digit number or its digits, when read from left to right, form either a strictly increasing or a strictly decreasing sequence. For example, , , and are monotonous, but , , and are not. How many monotonous positive integers are there?
Solution
Case 1: monotonous numbers with digits in ascending order
There are ways to choose n digits from the digits 1 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in ascending order. Note that 0 is not included since it will always be a leading digit and that is not allowed. The sum is equivalent to
Case 2: monotonous numbers with digits in descending order
There are ways to choose n digits from the digits 0 to 9. For each of these ways, we can generate exactly one monotonous number by ordering the chosen digits in descending order. Note that 0 is included since we are allowed to end numbers with zeros. The sum is equivalent to We discard the number 0 since it is not positive. Thus there are here.
Since the 1-digit numbers 1 to 9 satisfy both case 1 and case 2, we have overcounted by 9. Thus there are monotonous numbers.
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.