Difference between revisions of "2017 AMC 12B Problems/Problem 16"
m (→Solution) |
m |
||
Line 8: | Line 8: | ||
Solution by: vedadehhc | Solution by: vedadehhc | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2017|ab=B|num-b=15|num-a=17}} | ||
+ | {{MAA Notice}} |
Revision as of 21:56, 16 February 2017
Problem 16
The number has over positive integer divisors. One of them is chosen at random. What is the probability that it is odd?
Solution
If a factor of is odd, that means it contains no factors of . We can find the number of factors of two in by counting the number multiples of , , , and that are less than or equal to .After some quick counting we find that this number is . If the prime factorization of has factors of , there are choices for each divisor for how many factors of should be included ( to inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of is which is .
Solution by: vedadehhc
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.