Difference between revisions of "2017 AMC 12B Problems/Problem 16"
(Created page with "If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the numbe...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem 16== | ||
+ | The number <math>21!=51,090,942,171,709,440,000</math> has over <math>60,000</math> positive integer divisors. One of them is chosen at random. What is the probability that it is odd? | ||
+ | |||
+ | <math>\textbf{(A)}\ \frac{1}{21} \qquad \textbf{(B)}\ \frac{1}{19} \qquad \textbf{(C)}\ \frac{1}{18} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{11}{21}</math> | ||
+ | |||
+ | ==Solution== | ||
If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the number multiples of <math>2</math>, <math>4</math>, <math>8</math>, and <math>16</math> that are less than or equal to <math>21</math>.After some quick counting we find that this number is <math>10+5+2+1 = 18</math>. If the prime factorization of <math>21!</math> has <math>18</math> factors of <math>2</math>, there are <math>19</math> choices for each divisor for how many factors of <math>2</math> should be included (<math>0</math> to <math>18</math> inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of <math>2</math> is <math>0</math> which is <math>\frac{1}{19} \Rightarrow \boxed{B}</math>. | If a factor of <math>21!</math> is odd, that means it contains no factors of <math>2</math>. We can find the number of factors of two in <math>21!</math> by counting the number multiples of <math>2</math>, <math>4</math>, <math>8</math>, and <math>16</math> that are less than or equal to <math>21</math>.After some quick counting we find that this number is <math>10+5+2+1 = 18</math>. If the prime factorization of <math>21!</math> has <math>18</math> factors of <math>2</math>, there are <math>19</math> choices for each divisor for how many factors of <math>2</math> should be included (<math>0</math> to <math>18</math> inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of <math>2</math> is <math>0</math> which is <math>\frac{1}{19} \Rightarrow \boxed{B}</math>. | ||
+ | |||
+ | Solution by: vedadehhc |
Revision as of 19:19, 16 February 2017
Problem 16
The number has over positive integer divisors. One of them is chosen at random. What is the probability that it is odd?
Solution
If a factor of is odd, that means it contains no factors of . We can find the number of factors of two in by counting the number multiples of , , , and that are less than or equal to .After some quick counting we find that this number is . If the prime factorization of has factors of , there are choices for each divisor for how many factors of should be included ( to inclusive). The probability that a randomly chosen factor is odd is the same as if the number of factors of is which is .
Solution by: vedadehhc