Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 10"
m |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | In <math>\triangle ABC</math>, <math>AB</math>, <math>BC</math>, and <math>CA</math> have lengths <math>3</math>, <math>4</math>, and <math>5</math>, respectively. Let the incircle, circle <math>I</math>, of <math>\triangle ABC</math> touch <math>AB</math>, <math>BC</math>, and <math>CA</math> at <math>C'</math>, <math>A'</math>, and <math>B'</math>, respectively. Construct three circles, <math>A''</math>, <math>B''</math>, and <math>C''</math>, externally tangent to the other two and circles <math>A''</math>, <math>B''</math>, and <math>C''</math> are internally tangent to the circle <math>I</math> at <math>A'</math>, <math>B'</math>, and <math>C'</math>, respectively. Let circles <math>A''</math>, <math>B''</math>, <math>C''</math>, and <math>I</math> have radii <math>a</math>, <math>b</math>, <math>c</math>, and <math>r</math>, respectively. If <math>\frac{r}{a}+\frac{r}{b}+\frac{r}{c}=\frac{m}{n}</math> where <math>m</math> and <math>n</math> are positive integers, find <math>m+n</math>. | ||
− | [[Mock AIME 1 2006-2007]] | + | ==Solution== |
+ | {{solution}} | ||
+ | |||
+ | ---- | ||
+ | |||
+ | *[[Mock AIME 1 2006-2007/Problem 9 | Previous Problem]] | ||
+ | |||
+ | *[[Mock AIME 1 2006-2007/Problem 11 | Next Problem]] | ||
+ | |||
+ | *[[Mock AIME 1 2006-2007]] |
Revision as of 18:40, 22 August 2006
Problem
In , , , and have lengths , , and , respectively. Let the incircle, circle , of touch , , and at , , and , respectively. Construct three circles, , , and , externally tangent to the other two and circles , , and are internally tangent to the circle at , , and , respectively. Let circles , , , and have radii , , , and , respectively. If where and are positive integers, find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.