Difference between revisions of "2017 AMC 10A Problems/Problem 24"
m (→Solution) |
m |
||
Line 32: | Line 32: | ||
f(1)&=1^4+1^3-8009(1)^2+100(1)+900\\ | f(1)&=1^4+1^3-8009(1)^2+100(1)+900\\ | ||
&=1+1-8009+100+900\\ | &=1+1-8009+100+900\\ | ||
− | &=\boxed{\bold{(C) | + | &=\boxed{\bold{(C)}\, -7007}.\\ |
\end{align*}</cmath> | \end{align*}</cmath> | ||
Line 55: | Line 55: | ||
<cmath>1+\frac{ac}{10} = b = 1+\frac{-89 \cdot 900}{10} = b = -8009</cmath>. | <cmath>1+\frac{ac}{10} = b = 1+\frac{-89 \cdot 900}{10} = b = -8009</cmath>. | ||
− | We know that <math>f(1)</math> is the sum of its coefficients, hence <math>1+1+b+100+c</math>. We substitute the values we obtained for <math>b</math> and <math>c</math> into this expression to get <math>f(1) = 1 + 1 + (-8009) + 100 + 900 = | + | We know that <math>f(1)</math> is the sum of its coefficients, hence <math>1+1+b+100+c</math>. We substitute the values we obtained for <math>b</math> and <math>c</math> into this expression to get <math>f(1) = 1 + 1 + (-8009) + 100 + 900 = \boxed{\textbf{(C)}\,-7007}</math>. |
==Solution 3== | ==Solution 3== | ||
Line 111: | Line 111: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Note that <math>-7007=-1001\cdot(7)=-(7\cdot(11)\cdot(13))\cdot(7)=-91\cdot(77)</math> | Note that <math>-7007=-1001\cdot(7)=-(7\cdot(11)\cdot(13))\cdot(7)=-91\cdot(77)</math> | ||
− | This gives us a pretty good guess of <math>\boxed{\textbf{(C) } -7007}</math> | + | This gives us a pretty good guess of <math>\boxed{\textbf{(C)}\, -7007}</math>. |
==See Also== | ==See Also== |
Revision as of 14:27, 9 February 2017
Problem
For certain real numbers , , and , the polynomial has three distinct roots, and each root of is also a root of the polynomial What is ?
Solution 1
must have four roots, three of which are roots of . Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of and are the same, we know that
where is the fourth root of . Substituting and expanding, we find that
Comparing coefficients with , we see that
Let's solve for and . Since , , so . Since , , and . Thus, we know that
Taking , we find that
Solution 2
We notice that the constant term of and the constant term in . Because can be factored as (where is the unshared root of , we see that using the constant term, and therefore . Now we once again write out in factored form:
.
We can expand the expression on the right-hand side to get:
Now we have .
Simply looking at the coefficients for each corresponding term (knowing that they must be equal), we have the equations:
and finally,
.
We know that is the sum of its coefficients, hence . We substitute the values we obtained for and into this expression to get .
Solution 3
Let and be the roots of . Let be the additional root of . Then from Vieta's formulas on the quadratic term of and the cubic term of , we obtain the following:
Thus .
Now applying Vieta's formulas on the constant term of , the linear term of , and the linear term of , we obtain:
Substituting for in the bottom equation and factoring the remainder of the expression, we obtain:
It follows that . But so
Now we can factor in terms of as
Then and
Hence .
Solution 4 (Slight guessing)
Let the roots of be , , and . Let the roots of be , , , and . From Vieta's, we have: The fourth root is . Since , , and are coon roots, we have: Let : Note that This gives us a pretty good guess of .
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.