Difference between revisions of "2017 AMC 10A Problems/Problem 22"

m (added some latex)
m (Solution)
Line 15: Line 15:
 
label("O", (4, 3.4));
 
label("O", (4, 3.4));
 
</asy>
 
</asy>
Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the triangle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath>
+
Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=A|num-b=21|num-a=23}}
 
{{AMC10 box|year=2017|ab=A|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:14, 9 December 2017

Problem

Sides $\overline{AB}$ and $\overline{AC}$ of equilateral triangle $ABC$ are tangent to a circle at points $B$ and $C$ respectively. What fraction of the area of $\triangle ABC$ lies outside the circle?

$\textbf{(A) } \frac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \textbf{(B) } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } \sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \textbf{(E) } \frac{4}{3}-\frac{4\sqrt{3}\pi}{27}$

Solution

[asy] real sqrt3 = 1.73205080757; draw(Circle((4, 4), 4)); draw((4-2*sqrt3,6)--(4,4)--(4+2*sqrt3,6)--(4-2*sqrt3,6)--(4,12)--(4+2*sqrt3,6)); label("A", (4, 12.4)); label("B", (-.3, 6.3)); label("C", (8.3, 6.3)); label("O", (4, 3.4)); [/asy] Let the radius of the circle be $r$, and let its center be $O$. Since $\overline{AB}$ and $\overline{AC}$ are tangent to circle $O$, then $\angle OBA = \angle OCA = 90^{\circ}$, so $\angle BOC = 120^{\circ}$. Therefore, since $\overline{OB}$ and $\overline{OC}$ are equal to $r$, then (pick your favorite method) $\overline{BC} = r\sqrt{3}$. The area of the equilateral triangle is $\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4$, and the area of the sector we are subtracting from it is $\frac 13 \pi r^2 - \frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4$. The area outside of the circle is $\frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3$. Therefore, the answer is \[\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}\]

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png