Difference between revisions of "1979 AHSME Problems/Problem 25"

m (Solution)
(Solution)
Line 14: Line 14:
 
Solution by e_power_pi_times_i
 
Solution by e_power_pi_times_i
  
First, we divide <math>x^8</math> by <math>x+\frac{1}{2}</math> using synthetic division or some other method. The quotient is <math>x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}</math>, and the remainder is <math>\frac{1}{128}</math>. Then we plug the solution to <math>x+\frac{1}{2} = 0</math> into the quotient to find the remainder. Notice that every term in the quotient, when <math>x=-\frac{1}{2}</math>, evaluates to <math>-\frac{1}{128}</math>. Thus <math>r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}</math>.
+
First, we divide <math>x^8</math> by <math>x+\frac{1}{2}</math> using synthetic division or some other method. The quotient is <math>x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}</math>, and the remainder is <math>\frac{1}{256}</math>. Then we plug the solution to <math>x+\frac{1}{2} = 0</math> into the quotient to find the remainder. Notice that every term in the quotient, when <math>x=-\frac{1}{2}</math>, evaluates to <math>-\frac{1}{128}</math>. Thus <math>r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 10:44, 12 August 2019

Problem 25

If $q_1 ( x )$ and $r_ 1$ are the quotient and remainder, respectively, when the polynomial $x^ 8$ is divided by $x + \tfrac{1}{2}$ , and if $q_ 2 ( x )$ and $r_2$ are the quotient and remainder, respectively, when $q_ 1 ( x )$ is divided by $x + \tfrac{1}{2}$, then $r_2$ equals

$\textbf{(A) }\frac{1}{256}\qquad \textbf{(B) }-\frac{1}{16}\qquad \textbf{(C) }1\qquad \textbf{(D) }-16\qquad \textbf{(E) }256$

Solution

Solution by e_power_pi_times_i

First, we divide $x^8$ by $x+\frac{1}{2}$ using synthetic division or some other method. The quotient is $x^7-\frac{1}{2}x^6+\frac{1}{4}x^5-\frac{1}{8}x^4+\frac{1}{16}x^3-\frac{1}{32}x^2+\frac{1}{64}x-\frac{1}{128}$, and the remainder is $\frac{1}{256}$. Then we plug the solution to $x+\frac{1}{2} = 0$ into the quotient to find the remainder. Notice that every term in the quotient, when $x=-\frac{1}{2}$, evaluates to $-\frac{1}{128}$. Thus $r_2 =-\frac{8}{128} = \boxed{\textbf{(B) } -\frac{1}{16}}$.

See also

1979 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png