Difference between revisions of "1979 AHSME Problems/Problem 2"
m (→Solution) |
m (→Solution) |
||
Line 12: | Line 12: | ||
Moving all variables to one side of the equation, we can use Simon's Favorite Factoring Trick to factor the equation into <cmath>(x+1)(y-1) = -1</cmath> Plugging in <math>-1</math> and <math>1</math> as the <math>x</math> and <math>y</math> sides respectively, we get <math>x = -2</math> and <math>y = 2</math>. Plugging this in to <math>\frac{1}{x}-\frac{1}{y}</math> gives us <math>\boxed{-1}</math> as our final answer. | Moving all variables to one side of the equation, we can use Simon's Favorite Factoring Trick to factor the equation into <cmath>(x+1)(y-1) = -1</cmath> Plugging in <math>-1</math> and <math>1</math> as the <math>x</math> and <math>y</math> sides respectively, we get <math>x = -2</math> and <math>y = 2</math>. Plugging this in to <math>\frac{1}{x}-\frac{1}{y}</math> gives us <math>\boxed{-1}</math> as our final answer. | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1979|num-b=1|num-a=3}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 12:22, 3 January 2017
Problem 2
For all non-zero real numbers and such that equals
Solution
Moving all variables to one side of the equation, we can use Simon's Favorite Factoring Trick to factor the equation into Plugging in and as the and sides respectively, we get and . Plugging this in to gives us as our final answer.
See also
1979 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.