Difference between revisions of "2000 AIME I Problems/Problem 14"

(Solution)
m (Solution 3)
Line 28: Line 28:
 
=== Solution 3 ===
 
=== Solution 3 ===
  
Let the measure of <math>\angle BAC</math> be <math>\alpha</math> and <math>\overline{AP}=\overline{PQ}=\overline{QB}=\overline{BC}=x</math>. Because <math>\triangle APQ</math> is isosceles, <math>AQ=2x\cos(\alpha}</math>. So, <math>\overline{AB}=x\left(2\cos(\alpha)+1\right)</math>. <math>\triangle{ABC}</math> is isosceles too, so <math>x=\overline{BC}=2\overline{AC}\sin\left(\frac{\alpha}{2}\right)=2x\left(2\cos(\alpha)+1\right)\sin\left(\frac{\alpha}{2}\right)</math>.
+
Let the measure of <math>\angle BAC</math> be <math>\alpha</math> and <math>\overline{AP}=\overline{PQ}=\overline{QB}=\overline{BC}=x</math>. Because <math>\triangle APQ</math> is isosceles, <math>AQ=2x\cos(\alpha)</math>. So, <math>\overline{AB}=x\left(2\cos(\alpha)+1\right)</math>. <math>\triangle{ABC}</math> is isosceles too, so <math>x=\overline{BC}=2\overline{AC}\sin\left(\frac{\alpha}{2}\right)=2x\left(2\cos(\alpha)+1\right)\sin\left(\frac{\alpha}{2}\right)</math>.
 
Simplifying, <math>1=4\cos(\alpha)\sin\left(\frac{\alpha}{2}\right)+2sin\left(\frac{\alpha}{2}\right)</math>. By double angle formula, we know that <math>\cos(\alpha)=1-2\sin^2\left(\frac{\alpha}{2}\right)</math>.
 
Simplifying, <math>1=4\cos(\alpha)\sin\left(\frac{\alpha}{2}\right)+2sin\left(\frac{\alpha}{2}\right)</math>. By double angle formula, we know that <math>\cos(\alpha)=1-2\sin^2\left(\frac{\alpha}{2}\right)</math>.
Applying, <math>4sin\left(\frac{\alpha}{2}\right)-8sin^3\left(\frac{\alpha}{2}\right)+2sin\left(\frac{\alpha}{2}\right)=1</math> and <math>2\left(3sin\left(\frac{\alpha}{2}\right)-4sin^3\left(\frac{\alpha}{2}\right)\right)=1</math>.
+
Applying, <math>4\sin\left(\frac{\alpha}{2}\right)-8\sin^3\left(\frac{\alpha}{2}\right)+2\sin\left(\frac{\alpha}{2}\right)=1</math> and <math>2\left(3\sin\left(\frac{\alpha}{2}\right)-4\sin^3\left(\frac{\alpha}{2}\right)\right)=1</math>.
The expression in the parentheses though is triple angle formula! Hence, <math>sin\left(\frac{3\alpha}{2}\right)=\frac{1}{2}</math>, <math>\alpha=20^o</math>. It follows now that <math>\angle APQ=140^o</math>, <math>\angle ACB=80^o</math>. Giving <math>r=\frac{4}{7}.
+
The expression in the parentheses though is triple angle formula! Hence, <math>sin\left(\frac{3\alpha}{2}\right)=\frac{1}{2}</math>, <math>\alpha=20^o</math>. It follows now that <math>\angle APQ=140^o</math>, <math>\angle ACB=80^o</math>. Giving <math>r=\frac{4}{7}</math>.
</math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}$.
+
<math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 11:29, 26 December 2016

Problem

In triangle $ABC,$ it is given that angles $B$ and $C$ are congruent. Points $P$ and $Q$ lie on $\overline{AC}$ and $\overline{AB},$ respectively, so that $AP = PQ = QB = BC.$ Angle $ACB$ is $r$ times as large as angle $APQ,$ where $r$ is a positive real number. Find the greatest integer that does not exceed $1000r$.

Solution

Solution 1

[asy]defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60); draw(A--B--C--A);draw(P--Q);draw(A--R--B);draw(P--R);D(R--C,dashed); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0)); [/asy]

Let point $R$ be in $\triangle ABC$ such that $QB = BR = RP$. Then $PQBR$ is a rhombus, so $AB \parallel PR$ and $APRB$ is an isosceles trapezoid. Since $\overline{PB}$ bisects $\angle QBR$, it follows by symmetry in trapezoid $APRB$ that $\overline{RA}$ bisects $\angle BAC$. Thus $R$ lies on the perpendicular bisector of $\overline{BC}$, and $BC = BR = RC$. Hence $\triangle BCR$ is an equilateral triangle.

Now $\angle ABR = \angle BAC = \angle ACR$, and the sum of the angles in $\triangle ABC$ is $\angle ABR + 60^{\circ} + \angle BAC + \angle ACR + 60^{\circ} = 3\angle BAC + 120^{\circ} = 180^{\circ} \Longrightarrow \angle BAC = 20^{\circ}$. Then $\angle APQ = 140^{\circ}$ and $\angle ACB = 80^{\circ}$, so the answer is $\left\lfloor 1000 \cdot \frac{80}{140} \right\rfloor = \left\lfloor \frac{4000}{7} \right\rfloor = \boxed{571}$.

Solution 2

[asy]defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0));label("\(S\)",S,(-1,0)); [/asy]

Again, construct $R$ as above.

Let $\angle BAC = \angle QBR = \angle QPR = 2x$ and $\angle ABC = \angle ACB = y$, which means $x + y = 90$. $\triangle QBC$ is isosceles with $QB = BC$, so $\angle BCQ = 90 - \frac {y}{2}$. Let $S$ be the intersection of $QC$ and $BP$. Since $\angle BCQ = \angle BQC = \angle BRS$, $BCRS$ is cyclic, which means $\angle RBS = \angle RCS = x$. Since $APRB$ is an isosceles trapezoid, $BP = AR$, but since $AR$ bisects $\angle BAC$, $\angle ABR = \angle ACR = 2x$.

Therefore we have that $\angle ACB = \angle ACR + \angle RCS + \angle QCB = 2x + x + 90 - \frac {y}{2} = y$. We solve the simultaneous equations $x + y = 90$ and $2x + x + 90 - \frac {y}{2} = y$ to get $x = 10$ and $y = 80$. $\angle APQ = 180 - 4x = 140$, $\angle ACB = 80$, so $r = \frac {80}{140} = \frac {4}{7}$. $\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}$.

Solution 3

Let the measure of $\angle BAC$ be $\alpha$ and $\overline{AP}=\overline{PQ}=\overline{QB}=\overline{BC}=x$. Because $\triangle APQ$ is isosceles, $AQ=2x\cos(\alpha)$. So, $\overline{AB}=x\left(2\cos(\alpha)+1\right)$. $\triangle{ABC}$ is isosceles too, so $x=\overline{BC}=2\overline{AC}\sin\left(\frac{\alpha}{2}\right)=2x\left(2\cos(\alpha)+1\right)\sin\left(\frac{\alpha}{2}\right)$. Simplifying, $1=4\cos(\alpha)\sin\left(\frac{\alpha}{2}\right)+2sin\left(\frac{\alpha}{2}\right)$. By double angle formula, we know that $\cos(\alpha)=1-2\sin^2\left(\frac{\alpha}{2}\right)$. Applying, $4\sin\left(\frac{\alpha}{2}\right)-8\sin^3\left(\frac{\alpha}{2}\right)+2\sin\left(\frac{\alpha}{2}\right)=1$ and $2\left(3\sin\left(\frac{\alpha}{2}\right)-4\sin^3\left(\frac{\alpha}{2}\right)\right)=1$. The expression in the parentheses though is triple angle formula! Hence, $sin\left(\frac{3\alpha}{2}\right)=\frac{1}{2}$, $\alpha=20^o$. It follows now that $\angle APQ=140^o$, $\angle ACB=80^o$. Giving $r=\frac{4}{7}$. $\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}$.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png