Difference between revisions of "2016 AIME II Problems/Problem 7"
m (I don't know if this is right, but I think it should be AM-GM inequality instead of Cauchy-Schwarz) |
|||
Line 2: | Line 2: | ||
==Solution== | ==Solution== | ||
− | Letting <math>AI=a</math> and <math>IB=b</math>, we have <math>IJ^{2}=a^{2}+b^{2} \geq 1008</math> by | + | Letting <math>AI=a</math> and <math>IB=b</math>, we have <math>IJ^{2}=a^{2}+b^{2} \geq 1008</math> by CS inequality. Also, since <math>EFGH||ABCD</math>, the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and <math>2</math> adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since <math>2016=12^{2} \cdot 14</math>, we have the maximum area is <math>2016 \cdot \dfrac{11}{12} = 1848</math> and the minimum area is <math>1008</math>, so the desired answer is <math>1848-1008=\boxed{840}</math>. |
Solution by Shaddoll | Solution by Shaddoll |
Revision as of 20:26, 21 December 2016
Squares and have a common center at . The area of is 2016, and the area of is a smaller positive integer. Square is constructed so that each of its vertices lies on a side of and each vertex of lies on a side of . Find the difference between the largest and smallest positive integer values for the area of .
Solution
Letting and , we have by CS inequality. Also, since , the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since , we have the maximum area is and the minimum area is , so the desired answer is .
Solution by Shaddoll
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |