Difference between revisions of "1975 AHSME Problems/Problem 7"
m (→Solution) |
m (→Solution) |
||
Line 12: | Line 12: | ||
− | Notice that if <math>x</math> is negative, then the whole thing would amount to a negative number. Also notice that if <math>x</math> is positive, then <math>|x-|x|\-|</math> would be <math>0</math>, hence the whole thing would amount to <math>0</math>. Therefore, <math>\frac{|x-|x|\-|}{x}</math> is positive <math>\boxed{\textbf{(E) } \text{for no non-zero real numbers} | + | Notice that if <math>x</math> is negative, then the whole thing would amount to a negative number. Also notice that if <math>x</math> is positive, then <math>|x-|x|\-|</math> would be <math>0</math>, hence the whole thing would amount to <math>0</math>. Therefore, <math>\frac{|x-|x|\-|}{x}</math> is positive <math>\boxed{\textbf{(E)}\ \text{for no non-zero real numbers } x}</math>. |
Revision as of 12:27, 15 December 2016
For which non-zero real numbers is a positive integers?
Solution
Solution by e_power_pi_times_i
Notice that if is negative, then the whole thing would amount to a negative number. Also notice that if is positive, then would be , hence the whole thing would amount to . Therefore, is positive .