Difference between revisions of "1975 AHSME Problems/Problem 1"
(Created page with "==Solution== Calculating, we find that <math>\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}} = \frac {1}{2 - \frac {1}{2 - \frac {2}{3}}} = \frac {1}{2 - \frac {3}{4}}...") |
m (→Solution) |
||
Line 1: | Line 1: | ||
==Solution== | ==Solution== | ||
+ | Solution by e_power_pi_times_i | ||
− | + | Calculating, we find that <math>\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}} = \frac {1}{2 - \frac {1}{2 - \frac {2}{3}}} = \frac {1}{2 - \frac {3}{4}} = \frac {1}{\frac {5}{4}} = \boxed{\textbf{(B) } \dfrac{4}{5}}</math>. | |
− | Calculating, we find that <math>\frac {1}{2 - \frac {1}{2 - \frac {1}{2 - \frac12}}} = \frac {1}{2 - \frac {1}{2 - \frac {2}{3}}} = \frac {1}{2 - \frac {3}{4}} = \frac {1}{\frac {5}{4}} = \boxed{\textbf{(B) } \dfrac{4}{5}</math>. |
Revision as of 11:51, 15 December 2016
Solution
Solution by e_power_pi_times_i
Calculating, we find that .