Difference between revisions of "1965 AHSME Problems/Problem 1"

(Created page with "== Problem== 1. The number of real values of <math>x</math> satisfying the equation <math>2^{2x^2 - 7x + 5} = 1</math> is: <math>\textbf{(A)}\ 0 \qquad \textbf{(B) }\ 1 \qq...")
 
m (Problem)
Line 1: Line 1:
 
== Problem==
 
== Problem==
  
1. The number of real values of <math>x</math> satisfying the equation <math>2^{2x^2 - 7x + 5} = 1</math> is:
+
The number of real values of <math>x</math> satisfying the equation <math>2^{2x^2 - 7x + 5} = 1</math> is:
  
 
<math>\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 3 \qquad  \textbf{(E) }\ \text{more than 4}</math>
 
<math>\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 3 \qquad  \textbf{(E) }\ \text{more than 4}</math>

Revision as of 10:58, 22 November 2016

Problem

The number of real values of $x$ satisfying the equation $2^{2x^2 - 7x + 5} = 1$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 3 \qquad  \textbf{(E) }\ \text{more than 4}$