Difference between revisions of "1988 AIME Problems/Problem 13"
(→Solution 1) |
m (→Solution 3) |
||
Line 26: | Line 26: | ||
=== Solution 3 === | === Solution 3 === | ||
− | We can long divide and search for a pattern; then the remainder would be set to zero to solve for <math>a</math>. Writing out a few examples quickly shows us that the remainders after each subtraction follow the Fibonacci sequence. Carrying out this pattern, we find that the remainder is <math>(F_{16} + F_{17}a)x + F_{15}b + F_{16}a + 1 = 0</math>. Since the coefficient of <math>x</math> must be zero, this gives us two equations, <math>F_{16}b + F_{17}a = 0</math> and <math>F_{15}b + F_{16}a + 1 = 0</math>. Solving these two as above, we get that <math>a = 987</math>. | + | We can long divide and search for a pattern; then the remainder would be set to zero to solve for <math>a</math>. Writing out a few examples quickly shows us that the remainders after each subtraction follow the Fibonacci sequence. Carrying out this pattern, we find that the remainder is <math>(F_{16}b + F_{17}a)x + F_{15}b + F_{16}a + 1 = 0</math>. Since the coefficient of <math>x</math> must be zero, this gives us two equations, <math>F_{16}b + F_{17}a = 0</math> and <math>F_{15}b + F_{16}a + 1 = 0</math>. Solving these two as above, we get that <math>a = 987</math>. |
There are various similar solutions which yield the same pattern, such as repeated substitution of <math>x^2 = x + 1</math> into the larger polynomial. | There are various similar solutions which yield the same pattern, such as repeated substitution of <math>x^2 = x + 1</math> into the larger polynomial. |
Revision as of 19:28, 16 March 2017
Problem
Find if and are integers such that is a factor of .
Solution 1
Let's work backwards! Let and let be the polynomial such that .
Clearly, the constant term of must be . Now, we have , where is some coefficient. However, since has no term, it must be true that .
Let's find now. Notice that all we care about in finding is that . Therefore, . Undergoing a similar process, , , , and we see a nice pattern. The coefficients of are just the Fibonacci sequence with alternating signs! Therefore, , where denotes the 16th Fibonnaci number and .
Solution 2
Let represent the th number in the Fibonacci sequence. Therefore,
The above uses the similarity between the Fibonacci recursive definition, , and the polynomial .
and
Solution 3
We can long divide and search for a pattern; then the remainder would be set to zero to solve for . Writing out a few examples quickly shows us that the remainders after each subtraction follow the Fibonacci sequence. Carrying out this pattern, we find that the remainder is . Since the coefficient of must be zero, this gives us two equations, and . Solving these two as above, we get that .
There are various similar solutions which yield the same pattern, such as repeated substitution of into the larger polynomial.
Solution 4
The roots of are (the Golden Ratio) and . These two must also be roots of . Thus, we have two equations: and . Subtract these two and divide by to get . Noting that the formula for the th Fibonacci number is , we have . Since and are coprime, the solutions to this equation under the integers are of the form and , of which the only integral solutions for on are and . cannot work since does not divide , so the answer must be . (Note that this solution would not be valid on an Olympiad or any test that does not restrict answers as integers between and ).
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.