Difference between revisions of "1952 AHSME Problems/Problem 49"

m (Solution)
(Solution)
Line 25: Line 25:
 
== Solution ==
 
== Solution ==
 
Let <math>[ABC]=K.</math> Then <math>[ADC] = \frac{1}{3}K,</math> and hence <math>[N_1DC] = \frac{1}{7} [ADC] = \frac{1}{21}K.</math> Similarly, <math>[N_2EA]=[N_3FB] = \frac{1}{21}K.</math> Then <math>[N_2N_1CE] = [ADC] - [N_1DC]-[N_2EA] = \frac{5}{21}K,</math> and same for the other quadrilaterals. Then <math>[N_1N_2N_3]</math> is just <math>[ABC]</math> minus all the other regions we just computed. That is, <cmath>[N_1N_2N_3] = K - 3\left(\frac{1}{21}K\right) - 3\left(\frac{5}{21}\right)K = K - \frac{6}{7}K = \boxed{\textbf{(C) }\frac{1}{7}[ABC]}</cmath>
 
Let <math>[ABC]=K.</math> Then <math>[ADC] = \frac{1}{3}K,</math> and hence <math>[N_1DC] = \frac{1}{7} [ADC] = \frac{1}{21}K.</math> Similarly, <math>[N_2EA]=[N_3FB] = \frac{1}{21}K.</math> Then <math>[N_2N_1CE] = [ADC] - [N_1DC]-[N_2EA] = \frac{5}{21}K,</math> and same for the other quadrilaterals. Then <math>[N_1N_2N_3]</math> is just <math>[ABC]</math> minus all the other regions we just computed. That is, <cmath>[N_1N_2N_3] = K - 3\left(\frac{1}{21}K\right) - 3\left(\frac{5}{21}\right)K = K - \frac{6}{7}K = \boxed{\textbf{(C) }\frac{1}{7}[ABC]}</cmath>
 
-mathguy623
 
  
 
== See also ==
 
== See also ==

Revision as of 15:16, 6 August 2016

Problem

[asy] unitsize(27); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair A,B,C,D,E,F,X,Y,Z; A=(3,3); B=(0,0); C=(6,0); D=(4,0); E=(4,2); F=(1,1); draw(A--B--C--cycle); draw(A--D); draw(B--E); draw(C--F); X=intersectionpoint(A--D,C--F); Y=intersectionpoint(B--E,A--D); Z=intersectionpoint(B--E,C--F); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,NE); label("$F$",F,NW); label("$N_1$",X,NE); label("$N_2$",Y,WNW); label("$N_3$",Z,S); [/asy]

In the figure, $\overline{CD}$, $\overline{AE}$ and $\overline{BF}$ are one-third of their respective sides. It follows that $\overline{AN_2}: \overline{N_2N_1}: \overline{N_1D} = 3: 3: 1$, and similarly for lines BE and CF. Then the area of triangle $N_1N_2N_3$ is:

$\text{(A) } \frac {1}{10} \triangle ABC \qquad \text{(B) } \frac {1}{9} \triangle ABC \qquad \text{(C) } \frac{1}{7}\triangle ABC\qquad \text{(D) } \frac{1}{6}\triangle ABC\qquad \text{(E) } \text{none of these}$

Solution

Let $[ABC]=K.$ Then $[ADC] = \frac{1}{3}K,$ and hence $[N_1DC] = \frac{1}{7} [ADC] = \frac{1}{21}K.$ Similarly, $[N_2EA]=[N_3FB] = \frac{1}{21}K.$ Then $[N_2N_1CE] = [ADC] - [N_1DC]-[N_2EA] = \frac{5}{21}K,$ and same for the other quadrilaterals. Then $[N_1N_2N_3]$ is just $[ABC]$ minus all the other regions we just computed. That is, \[[N_1N_2N_3] = K - 3\left(\frac{1}{21}K\right) - 3\left(\frac{5}{21}\right)K = K - \frac{6}{7}K = \boxed{\textbf{(C) }\frac{1}{7}[ABC]}\]

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 48
Followed by
Problem 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png