Difference between revisions of "1996 USAMO Problems/Problem 2"
m |
m (→See Also) |
||
Line 25: | Line 25: | ||
However, that clearly implies the desired conclusion, as every sum belongs to a group, and every sum belonging to a group is a member of a class. Moreover, there will be precisely <math>n</math> classes, because every term <math>a_i</math> belongs to a group and for each group <math>G</math>, there are as many classes for <math>\mathcal{S}(G)</math> as there are terms in <math>G</math>. | However, that clearly implies the desired conclusion, as every sum belongs to a group, and every sum belonging to a group is a member of a class. Moreover, there will be precisely <math>n</math> classes, because every term <math>a_i</math> belongs to a group and for each group <math>G</math>, there are as many classes for <math>\mathcal{S}(G)</math> as there are terms in <math>G</math>. | ||
== See Also == | == See Also == | ||
− | {{USAMO | + | {{USAMO newbox|year=1996|num-b=1|num-a=3}} |
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Olympiad Combinatorics Problems]] | [[Category:Olympiad Combinatorics Problems]] |
Revision as of 08:29, 20 July 2016
Problem
For any nonempty set of real numbers, let
denote the sum of the elements of
. Given a set
of
positive integers, consider the collection of all distinct sums
as
ranges over the nonempty subsets of
. Prove that this collection of sums can be partitioned into
classes so that in each class, the ratio of the largest sum to the smallest sum does not exceed 2.
Solution
Let set consist of the integers
. For
, call
greedy if
. Also call
greedy. Now put all elements of
into groups of consecutive terms in such a way that each group
begins with a greedy term, call it
, and ends on the term
just before the next greedy term after
. (If
is the last greedy term, let
.) We introduce some more terminology. A sum
is said to "belong to" a group
if
. Denote by
the set of all sums belonging to
.
We now show that we can divide into
(the cardinality of
) classes in such a way that the maximum and minimum sum belonging to each class differ by no more than a factor of 2. Using the previous notation, we first prove that
. Note that
and
Taking note of that fact that
are not greedy numbers, we write:
where the inequalities after the ellipses result from the fact that is a greedy number (which implies by definition that
). This proves the desired inequality. Now we can prove the result in bold above. Divide
into
classes by taking those terms in
and placing them in the first class, taking those terms in
and placing them in another, and so on, until we reach
. The inequality we proved above shows that all of the sums in
will fall in one of these classes, as the intervals into which the classes fall form a continuous range bounded by
on the bottom and
on the top. This proves the result in bold.
However, that clearly implies the desired conclusion, as every sum belongs to a group, and every sum belonging to a group is a member of a class. Moreover, there will be precisely classes, because every term
belongs to a group and for each group
, there are as many classes for
as there are terms in
.
See Also
1996 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.