Difference between revisions of "Exradius"
Pratik2002 (talk | contribs) (Created page with "Excircle The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then ...") |
|||
Line 1: | Line 1: | ||
Excircle | Excircle | ||
The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then | The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then | ||
− | + | <math> | |
r_1 = Delta/(s-a) | r_1 = Delta/(s-a) | ||
(1) | (1) | ||
Line 8: | Line 8: | ||
= 4Rsin(1/2A)cos(1/2B)cos(1/2C) | = 4Rsin(1/2A)cos(1/2B)cos(1/2C) | ||
(3) | (3) | ||
+ | </math> | ||
(Johnson 1929, p. 189), where R is the circumradius. Let r be the inradius, then | (Johnson 1929, p. 189), where R is the circumradius. Let r be the inradius, then | ||
Revision as of 21:18, 26 June 2019
Excircle The radius of an excircle. Let a triangle have exradius r_A (sometimes denoted rho_A), opposite side of length a and angle A, area Delta, and semiperimeter s. Then (Johnson 1929, p. 189), where R is the circumradius. Let r be the inradius, then
4R=r_1+r_2+r_3-r
(4)
1/(r_1)+1/(r_2)+1/(r_3)=1/r
(5) (Casey 1888, p. 65) and
rr_1r_2r_3=Delta^2.
(6) Some fascinating formulas due to Feuerbach are
r(r_2r_3+r_3r_1+r_1r_2)=sDelta=r_1r_2r_3
r(r_1+r_2+r_3)=bc+ca+ab-s^2 rr_1+rr_2+rr_3+r_1r_2+r_2r_3+r_3r_1=bc+ca+ab r_2r_3+r_3r_1+r_1r_2-rr_1-rr_2-rr_3=1/2(a^2+b^2+c^2)