Difference between revisions of "1983 AHSME Problems/Problem 25"

(See Also)
(Problem 25)
Line 1: Line 1:
 
==Problem 25==
 
==Problem 25==
If <math>60^a=3</math> and <math>60^b=5</math>, then <math>12^[(1-a-b)/2(1-b)]</math> is
+
If <math>60^a=3</math> and <math>60^b=5</math>, then <math>12^{[(1-a-b)/2(1-b)]}</math> is
  
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad</math>
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad</math>

Revision as of 05:39, 18 May 2016

Problem 25

If $60^a=3$ and $60^b=5$, then $12^{[(1-a-b)/2(1-b)]}$ is

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad$

Solution

Since $12 = 60/5$, $12 = 60/(60^b)$= $60^{(1-b)}$

So we can rewrite $12^{[(1-a-b)/2(1-b)]}$ as $60^{[(1-b)(1-a-b)/2(1-b)]}$

this simplifies to $60^{[(1-a-b)/2]}$

which can be rewritten as $(60^{(1-a-b)})^{(1/2)}$

$60^{(1-a-b)} = 60^1/[(60^a)(60^b)] = 60/(3*5) = 4$

$4^{(1/2)} = 2$

Answer:$\fbox{\textbf{B}}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png