Difference between revisions of "2016 AIME II Problems/Problem 15"
m (→Solution) |
|||
Line 2: | Line 2: | ||
==Solution== | ==Solution== | ||
− | Replace <math>\sum x_ix_j</math> with <math>\frac12\left(\left(\sum x_i\right)^2-\sum x_i^2\right)</math> and the second equation becomes <math>\sum\frac{x_i^2}{1-a_i}=\frac{1}{215}</math>. Conveniently, <math>\sum 1-a_i=215</math> so we get <math>\left(\sum 1-a_i\right)\left(\sum\frac{x_i^2}{1-a_i}\right)=1=\left(\sum x_i\right)^2</math>. This is the equality case of Cauchy so <math>x_i=c(1-a_i)</math> for some constant <math>c</math>. Using <math>\sum x_i=1</math>, we find <math>c=\frac{1}{215}</math> and thus <math>x_2=\frac{3}{860}</math>. | + | Replace <math>\sum x_ix_j</math> with <math>\frac12\left(\left(\sum x_i\right)^2-\sum x_i^2\right)</math> and the second equation becomes <math>\sum\frac{x_i^2}{1-a_i}=\frac{1}{215}</math>. Conveniently, <math>\sum 1-a_i=215</math> so we get <math>\left(\sum 1-a_i\right)\left(\sum\frac{x_i^2}{1-a_i}\right)=1=\left(\sum x_i\right)^2</math>. This is the equality case of Cauchy so <math>x_i=c(1-a_i)</math> for some constant <math>c</math>. Using <math>\sum x_i=1</math>, we find <math>c=\frac{1}{215}</math> and thus <math>x_2=\frac{3}{860}</math>. Thus, the desired answer is <math>860+3=\boxed{863}</math>. |
Revision as of 21:12, 17 March 2016
For let and . Let be positive real numbers such that and . The maximum possible value of , where and are relatively prime positive integers. Find .
Solution
Replace with and the second equation becomes . Conveniently, so we get . This is the equality case of Cauchy so for some constant . Using , we find and thus . Thus, the desired answer is .