Difference between revisions of "2015 USAJMO Problems/Problem 3"
(→Solution) |
(→Solution 2) |
||
Line 20: | Line 20: | ||
===Solution 2=== | ===Solution 2=== | ||
Note that each point <math>X</math> on <math>PQ</math> corresponds to exactly one point on arc <math>PBQ</math>. Also notice that since <math>AB</math> is the diameter of <math>\omega</math>, <math>\angle ASB</math> is always a right angle; therefore, point <math>T</math> is always <math>B</math>. WLOG, assume that <math>\omega</math> is on the coordinate plane, and <math>B</math> corresponds to the origin. The locus of <math>M</math>, since the locus of <math>S</math> is arc <math>PBQ</math>, is the arc that is produced when arc <math>PBQ</math> is dilated by <math>\frac {1} {2}</math> with respect to the origin, which resides on the circle <math>\psi</math>, which is produced when <math>\omega</math> is dilated by <math>\frac {1} {2}</math> with respect to the origin. | Note that each point <math>X</math> on <math>PQ</math> corresponds to exactly one point on arc <math>PBQ</math>. Also notice that since <math>AB</math> is the diameter of <math>\omega</math>, <math>\angle ASB</math> is always a right angle; therefore, point <math>T</math> is always <math>B</math>. WLOG, assume that <math>\omega</math> is on the coordinate plane, and <math>B</math> corresponds to the origin. The locus of <math>M</math>, since the locus of <math>S</math> is arc <math>PBQ</math>, is the arc that is produced when arc <math>PBQ</math> is dilated by <math>\frac {1} {2}</math> with respect to the origin, which resides on the circle <math>\psi</math>, which is produced when <math>\omega</math> is dilated by <math>\frac {1} {2}</math> with respect to the origin. | ||
+ | By MSmathlete1018 |
Revision as of 23:06, 6 March 2016
Problem
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Solution
WLOG, let the circle be the unit circle centered at the origin, A=(1,0) P=(1-a,b), Q=(1-a,-b), where (1-a)^2+b^2=1. Let angle <XAB=A, which is an acute angle, tanA=t, then X=(1-a,at).
Angle <BOS=2A, S=(-cos2A,sin2A). Let M=(u,v), then T=(2u+cos2A, 2v-sin2A)
The condition TX perpendicular to AX yields (2v-sin2A-at)/(2u+cos2A+a-1)=cotA. (E1) Use identities (cosA)^2=1/(1+t^2), cos2A=2(cosA)^2-1= 2/(1+t^2) -1, sin2A=2sinAcosA=2t^2/(1+t^2), we obtain 2vt-at^2=2u+a. (E1')
The condition that T is on the circle yields (2u+cos2A)^2+ (2v-sin2A)^2=1, namely vsin2A-ucos2A=u^2+v^2. (E2)
M is the mid-point on the hypotenuse of triangle STX, hence MS=MX, yielding (u+cos2A)^2+(v-sin2A)^2=(u+a-1)^2+(v-at)^2. (E3)
Expand (E3), using (E2) to replace 2(vsin2A-ucos2A) with 2(u^2+v^2), and using (E1') to replace a(-2vt+at^2) with -a(2u+a), and we obtain u^2-u-a+v^2=0, namely (u-1/2)^2+v^2=a+1/4, which is a circle centered at (1/2,0) with radius r=sqrt(a+1/4).
Solution 2
Note that each point on corresponds to exactly one point on arc . Also notice that since is the diameter of , is always a right angle; therefore, point is always . WLOG, assume that is on the coordinate plane, and corresponds to the origin. The locus of , since the locus of is arc , is the arc that is produced when arc is dilated by with respect to the origin, which resides on the circle , which is produced when is dilated by with respect to the origin. By MSmathlete1018