Difference between revisions of "2016 AIME I Problems/Problem 7"

(Problem)
(Solution)
Line 15: Line 15:
 
Case 2:  <math>ab \le -2016</math>.  In this case, we want
 
Case 2:  <math>ab \le -2016</math>.  In this case, we want
 
<cmath>0 = \text{Im}({\frac{\sqrt{ab+2016}}{ab+100}-({\frac{\sqrt{|a+b|}}{ab+100}})i}) = \frac{\sqrt{ab+2016} - \sqrt{|a+b|}}{ab+100}</cmath>
 
<cmath>0 = \text{Im}({\frac{\sqrt{ab+2016}}{ab+100}-({\frac{\sqrt{|a+b|}}{ab+100}})i}) = \frac{\sqrt{ab+2016} - \sqrt{|a+b|}}{ab+100}</cmath>
 +
Squaring, we have the equations <math>ab \ne -100</math> (which always holds in this case) and
 +
<math></math>ab + 2016 = |a + b|
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2016|n=I|num-b=6|num-a=8}}
 
{{AIME box|year=2016|n=I|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:49, 4 March 2016

Problem

For integers $a$ and $b$ consider the complex number \[\frac{\sqrt{ab+2016}}{ab+100}-({\frac{\sqrt{|a+b|}}{ab+100}})i\]

Find the number of ordered pairs of integers $(a,b)$ such that this complex number is a real number.

Solution

We consider two cases:

Case 1: $ab \ge -2016$ In this case, if \[0 = \text{Im}({\frac{\sqrt{ab+2016}}{ab+100}-({\frac{\sqrt{|a+b|}}{ab+100}})i}) = -\frac{\sqrt{|a+b|}}{ab+100}\] then $ab \ne -100$ and $|a + b| = 0 = a + b$. Thus $ab = -a^2$ so $a^2 < 2016$. Thus $a = -44,-43, ... , -1, 0, 1, ..., 43, 44$, yielding $89$ values. However since $ab = -a^2 \ne -100$, we have $a \ne \pm 10$. Thus there are $87$ allowed tuples $(a,b)$ in this case.

Case 2: $ab \le -2016$. In this case, we want \[0 = \text{Im}({\frac{\sqrt{ab+2016}}{ab+100}-({\frac{\sqrt{|a+b|}}{ab+100}})i}) = \frac{\sqrt{ab+2016} - \sqrt{|a+b|}}{ab+100}\] Squaring, we have the equations $ab \ne -100$ (which always holds in this case) and $$ (Error compiling LaTeX. Unknown error_msg)ab + 2016 = |a + b|

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png