Difference between revisions of "2016 AIME I Problems/Problem 10"
(→Solution) |
m (edited the wording of the solution) |
||
Line 7: | Line 7: | ||
<cmath>1, 2,4,6,9,12,16,20,25,30,36,42,49,\cdots</cmath> | <cmath>1, 2,4,6,9,12,16,20,25,30,36,42,49,\cdots</cmath> | ||
− | Here we can see a pattern; every second term (starting from the first) is a square, and every second term (starting from the third) is the end of a geometric sequence. Similarly, <math>a_{13}</math> would also need to be the end of a geometric sequence (divisible by a square). We see that <math>2016</math> is <math>2^5 \cdot 3^2 \cdot 7</math>, so the squares that would fit in <math>2016</math> are <math>1^2=1</math>, <math>2^2=4</math>, <math>3^2=9</math>, <math>2^4=16</math>, <math>2^2 \cdot 3^2 = 36</math>, and <math>2^4 \cdot 3^2 = 144</math>. By simple inspection <math>144</math> is the only plausible square, since the other squares don't have enough | + | Here we can see a pattern; every second term (starting from the first) is a square, and every second term (starting from the third) is the end of a geometric sequence. Similarly, <math>a_{13}</math> would also need to be the end of a geometric sequence (divisible by a square). We see that <math>2016</math> is <math>2^5 \cdot 3^2 \cdot 7</math>, so the squares that would fit in <math>2016</math> are <math>1^2=1</math>, <math>2^2=4</math>, <math>3^2=9</math>, <math>2^4=16</math>, <math>2^2 \cdot 3^2 = 36</math>, and <math>2^4 \cdot 3^2 = 144</math>. By simple inspection <math>144</math> is the only plausible square, since the other squares in the sequence don't have enough elements before them to go all the way back to <math>a_1</math> while staying positive. <math>a_{13}=2016=14\cdot 144</math>, so <math>a_1=14\cdot 36=\fbox{504}</math>. |
~Iy31n~ | ~Iy31n~ |
Revision as of 17:53, 4 March 2016
A strictly increasing sequence of positive integers , , , has the property that for every positive integer , the subsequence , , is geometric and the subsequence , , is arithmetic. Suppose that . Find .
Solution
We first create a similar sequence where and . Continuing the sequence,
Here we can see a pattern; every second term (starting from the first) is a square, and every second term (starting from the third) is the end of a geometric sequence. Similarly, would also need to be the end of a geometric sequence (divisible by a square). We see that is , so the squares that would fit in are , , , , , and . By simple inspection is the only plausible square, since the other squares in the sequence don't have enough elements before them to go all the way back to while staying positive. , so .
~Iy31n~
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.