Difference between revisions of "2016 AMC 12B Problems/Problem 3"

(Solution)
(Problem)
Line 2: Line 2:
  
 
Let <math>x=-2016</math>. What is the value of <math>\bigg|</math> <math>||x|-x|-|x|</math> <math>\bigg|</math> <math>-x</math>?
 
Let <math>x=-2016</math>. What is the value of <math>\bigg|</math> <math>||x|-x|-|x|</math> <math>\bigg|</math> <math>-x</math>?
 +
 +
<math>\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048</math>
  
 
==Solution==
 
==Solution==

Revision as of 00:56, 6 September 2017

Problem

Let $x=-2016$. What is the value of $\bigg|$ $||x|-x|-|x|$ $\bigg|$ $-x$?

$\textbf{(A)}\ -2016\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2016\qquad\textbf{(D)}\ 4032\qquad\textbf{(E)}\ 6048$

Solution

By: dragonfly

First of all, lets plug in all of the $x$'s into the equation.

$\bigg|$ $||-2016|-(-2016)|-|-2016|$ $\bigg|$ $-(-2016)$

Then we simplify to get

$\bigg|$ $|2016+2016|-2016$ $\bigg|$ $+2016$

which simplifies into

$\bigg|$ $2016$ $\bigg|$ $+2016$

and finally we get $\boxed{\textbf{(D)}\ 4032}$

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png