Difference between revisions of "2016 AMC 10B Problems/Problem 19"
(Provided a method using coordinate geometry for obtaining the solution.) |
(added in a synthetic sol :D) |
||
Line 75: | Line 75: | ||
Finding the intersections of <math>AC</math> and <math>EF</math>, and <math>AG</math> and <math>EF</math> gives the x-coordinates of <math>P</math> and <math>Q</math> to be <math>\frac{20}{7}</math> and <math>\frac{40}{13}</math>. This means that <math>P'Q' = DQ' - DP' = \frac{20}{7} - \frac{40}{13} = \frac{20}{91}</math>. Now we can find <math>\frac{PQ}{EF} = \frac{P'Q'}{E'F} = \frac{\frac{20}{91}}{2} = \textbf{(D)}~\frac{10}{91}</math> | Finding the intersections of <math>AC</math> and <math>EF</math>, and <math>AG</math> and <math>EF</math> gives the x-coordinates of <math>P</math> and <math>Q</math> to be <math>\frac{20}{7}</math> and <math>\frac{40}{13}</math>. This means that <math>P'Q' = DQ' - DP' = \frac{20}{7} - \frac{40}{13} = \frac{20}{91}</math>. Now we can find <math>\frac{PQ}{EF} = \frac{P'Q'}{E'F} = \frac{\frac{20}{91}}{2} = \textbf{(D)}~\frac{10}{91}</math> | ||
+ | ==Solution 3 (Similar Triangles)== | ||
+ | [asy] pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | pair H = (20/3,0); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw(B1--H); | ||
+ | draw((0,0)--H); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("<math>Q</math>",(3.07692307692,2.15384615384),N); | ||
+ | label("<math>P</math>",(20/7,12/7),W); | ||
+ | label("<math>A</math>",(0,4), NW); | ||
+ | label("<math>B</math>",(5,4), NE); | ||
+ | label("<math>C</math>",(5,0),SE); | ||
+ | label("<math>D</math>",(0,0),SW); | ||
+ | label("<math>F</math>",(2,0),S); label("<math>G</math>",(5,1),E); | ||
+ | label("<math>E</math>",(4,4),N); | ||
+ | label("<math>H</math>",H,E); | ||
+ | |||
+ | dot(A1); dot(A2); | ||
+ | dot(B1); dot(B2); | ||
+ | dot(C1); dot(C2); | ||
+ | dot(H); | ||
+ | dot((0,0)); dot((5,4));[/asy] | ||
+ | |||
+ | Extend <math>AG</math> to intersect <math>CD</math> at <math>H</math>. Letting <math>x=\overline{HC}</math>, we have that <cmath>\triangle{HCG}\sim\triangle{HDA}\implies \dfrac{\overline{HC}}{\overline{CG}}=\dfrac{\overline{HD}}{\overline{AD}}\implies \dfrac{x}{1}=\dfrac{x+5}{4}\implies x=\dfrac{5}{3}.</cmath> | ||
+ | |||
+ | Then, notice that <math>\triangle{AEQ}\sim\triangle{HFQ}</math> and <math>\triangle{AEP}\sim\triangle{CFP}</math>. Thus, we see that <cmath>\dfrac{AE}{HF}=\dfrac{EQ}{QF}\implies \dfrac{EQ}{QF} = \dfrac{4}{3+\frac{5}{3}} = \dfrac{12}{14}=\dfrac{6}{7}\implies \dfrac{EQ}{EF}=\dfrac{6}{13}</cmath> | ||
+ | and <cmath>\dfrac{AE}{CF}=\dfrac{EP}{FP} \implies \dfrac{4}{3}=\dfrac{EP}{FP}\implies \dfrac{FP}{FE} = \dfrac{3}{7}.</cmath> | ||
+ | Thus, we see that <cmath>\dfrac{PQ}{EF} = 1-\left(\dfrac{6}{13}+\dfrac{3}{7}\right) = 1-\left(\dfrac{42+39}{91}\right) = 1-\left(\dfrac{81}{91}\right) = \boxed{\dfrac{10}{91}}.</cmath> | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|num-b=18|num-a=20}} | {{AMC10 box|year=2016|ab=B|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:43, 21 February 2016
Contents
Problem
Rectangle has and . Point lies on so that , point lies on so that . and point lies on so that . Segments and intersect at and , respectively. What is the value of ?
Solution 1 (Answer Choices)
Since the opposite sides of a rectangle are parallel and due to vertical angles, . Furthermore, the ratio between the side lengths of the two triangles is . Labeling and , we see that turns out to be equal to . Since the denominator of must now be a multiple of 7, the only possible solution in the answer choices is .
Solution 2 (Coordinate Geometry)
First, we will define point as the origin. Then, we will find the equations of the following three lines: , , and . The slopes of these lines are , , and , respectively. Next, we will find the equations of , , and . They are as follows: After drawing in altitudes to from , , and , we see that because of similar triangles, and so we only need to find the x-coordinates of and . Finding the intersections of and , and and gives the x-coordinates of and to be and . This means that . Now we can find
Solution 3 (Similar Triangles)
[asy] pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4); pair H = (20/3,0); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw(B1--H); draw((0,0)--H); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("",(3.07692307692,2.15384615384),N); label("",(20/7,12/7),W); label("",(0,4), NW); label("",(5,4), NE); label("",(5,0),SE); label("",(0,0),SW); label("",(2,0),S); label("",(5,1),E); label("",(4,4),N); label("",H,E);
dot(A1); dot(A2); dot(B1); dot(B2); dot(C1); dot(C2); dot(H); dot((0,0)); dot((5,4));[/asy]
Extend to intersect at . Letting , we have that
Then, notice that and . Thus, we see that and Thus, we see that
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.