Difference between revisions of "2016 AMC 10B Problems/Problem 24"

(Created page with "==Problem== How many four-digit integers <math>abcd</math>, with <math>a \not\equiv 0</math>, have the property that the three two-digit integers <math>ab<bc<cd</math> form a...")
 
(Problem)
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20</math>
 
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20</math>
 +
 +
 +
==Solution==
 +
 +
 +
==See Also==
 +
{{AMC10 box|year=2016|ab=B|num-b=23|num-a=25}}
 +
{{MAA Notice}}

Revision as of 12:25, 21 February 2016

Problem

How many four-digit integers $abcd$, with $a \not\equiv 0$, have the property that the three two-digit integers $ab<bc<cd$ form an increasing arithmetic sequence? One such number is $4692$, where $a=4$, $b=6$, $c=9$, and $d=2$.

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20$


Solution

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png