Difference between revisions of "2016 AMC 10B Problems/Problem 16"

(Created page with "==Problem== The sum of an infinite geometric series is a positive number <math>S</math>, and the second term in the series is <math>1</math>. What is the smallest possible va...")
 
(Problem)
Line 8: Line 8:
 
\textbf{(D)}\ 3 \qquad
 
\textbf{(D)}\ 3 \qquad
 
\textbf{(E)}\ 4</math>
 
\textbf{(E)}\ 4</math>
 +
 +
 +
==Solution==
 +
 +
 +
==See Also==
 +
{{AMC10 box|year=2016|ab=B|num-b=15|num-a=17}}
 +
{{MAA Notice}}

Revision as of 12:12, 21 February 2016

Problem

The sum of an infinite geometric series is a positive number $S$, and the second term in the series is $1$. What is the smallest possible value of $S?$

$\textbf{(A)}\ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ \sqrt{5} \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$


Solution

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png